@phdthesis{Murr2012, author = {Murr, R{\"u}diger}, title = {Reciprocal classes of Markov processes : an approach with duality formulae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62091}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular L{\´e}vy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable function- als. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein's lemma for Gaussian random variables and Chen's lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures. The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal. In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable.}, language = {en} } @phdthesis{Conforti2015, author = {Conforti, Giovanni}, title = {Reciprocal classes of continuous time Markov Chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82255}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 183}, year = {2015}, abstract = {In this thesis we study reciprocal classes of Markov chains. Given a continuous time Markov chain on a countable state space, acting as reference dynamics, the associated reciprocal class is the set of all probability measures on path space that can be written as a mixture of its bridges. These processes possess a conditional independence property that generalizes the Markov property, and evolved from an idea of Schr{\"o}dinger, who wanted to obtain a probabilistic interpretation of quantum mechanics. Associated to a reciprocal class is a set of reciprocal characteristics, which are space-time functions that determine the reciprocal class. We compute explicitly these characteristics, and divide them into two main families: arc characteristics and cycle characteristics. As a byproduct, we obtain an explicit criterion to check when two different Markov chains share their bridges. Starting from the characteristics we offer two different descriptions of the reciprocal class, including its non-Markov probabilities. The first one is based on a pathwise approach and the second one on short time asymptotic. With the first approach one produces a family of functional equations whose only solutions are precisely the elements of the reciprocal class. These equations are integration by parts on path space associated with derivative operators which perturb the paths by mean of the addition of random loops. Several geometrical tools are employed to construct such formulas. The problem of obtaining sharp characterizations is also considered, showing some interesting connections with discrete geometry. Examples of such formulas are given in the framework of counting processes and random walks on Abelian groups, where the set of loops has a group structure. In addition to this global description, we propose a second approach by looking at the short time behavior of a reciprocal process. In the same way as the Markov property and short time expansions of transition probabilities characterize Markov chains, we show that a reciprocal class is characterized by imposing the reciprocal property and two families of short time expansions for the bridges. Such local approach is suitable to study reciprocal processes on general countable graphs. As application of our characterization, we considered several interesting graphs, such as lattices, planar graphs, the complete graph, and the hypercube. Finally, we obtain some first results about concentration of measure implied by lower bounds on the reciprocal characteristics.}, language = {en} }