@phdthesis{Michaelis2022, author = {Michaelis, Marcus}, title = {Molekulare Erkennung von Cellulose und Cellulose-Fragmenten durch Cellulose-Bindemodule \& Interaktionsstudien zwischen den zytoplasmatischen Dom{\"a}nen von Integrin-β1/β3 und dem fokalen Adh{\"a}sionsprotein Paxillin}, doi = {10.25932/publishup-55516}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555162}, school = {Universit{\"a}t Potsdam}, pages = {VI, 171}, year = {2022}, abstract = {Proteine erf{\"u}llen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufkl{\"a}rung derer Struktur und deren Bindungsverhaltens mit anderen Molek{\"u}len wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molek{\"u}len. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Gr{\"o}ßenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zug{\"a}ngliche Stellen im Protein f{\"u}r eine m{\"o}gliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren {\"u}ber zwischenmolekulare Kr{\"a}fte mit den Seitenketten von aromatischen Aminos{\"a}uren und {\"u}ber Wasserstoffbr{\"u}ckenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie L{\"o}slichkeit oder Stabilit{\"a}t zu beeinflussen. Es zeigte sich, das w{\"a}hrend die grafting from Methode (Polymer w{\"a}chst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins f{\"u}hrte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilit{\"a}t behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit besch{\"a}ftigte sich mit der Interaktion von zwei LIM-Dom{\"a}nen des Proteins Paxillin und der zytoplasmatischen Dom{\"a}ne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adh{\"a}sionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Gr{\"o}ßenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminos{\"a}uregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, n{\"a}mlich an den flexiblen Loop der LIM3-Dom{\"a}ne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach h{\"o}heren Affinit{\"a}t im Vergleich zu Integrin-β3 an Paxillin bindet. W{\"a}hrend Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminos{\"a}uren entfernt und erneut Bindungsstudien durchgef{\"u}hrt, welche gezeigt haben, das die Affinit{\"a}t dadurch fast vollst{\"a}ndig unterbunden wurde. Final wurde der flexible Loop der LIM3-Dom{\"a}ne in zwei andere Aminos{\"a}uresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszul{\"o}schen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Dom{\"a}ne gef{\"u}hrt haben und somit nicht als geeignete Kandidaten f{\"u}r diese Studien identifiziert werden konnten.}, language = {de} } @phdthesis{Gehmlich2004, author = {Gehmlich, Katja}, title = {Strukturen der Kraft{\"u}bertragung im quergestreiften Muskel : Protein-Protein-Wechselwirkungen und Regulationsmechanismen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2576}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Im Mittelpunkt dieser Arbeit standen Signaltransduktionsprozesse in den Strukturen der Kraft{\"u}bertragung quergestreifter Muskelzellen, d. h. in den Costameren (Zell-Matrix-Kontakten) und den Glanzstreifen (Zell-Zell-Kontakten der Kardiomyozyten).Es ließ sich zeigen, dass sich die Morphologie der Zell-Matrix-Kontakte w{\"a}hrend der Differenzierung von Skelettmuskelzellen dramatisch {\"a}ndert, was mit einer ver{\"a}nderten Proteinzusammensetzung einhergeht. Immunfluoreszenz-Analysen von Skelettmuskelzellen verschiedener Differenzierungsstadien implizieren, dass die Signalwege, welche die Dynamik der Fokalkontakte in Nichtmuskelzellen bestimmen, nur f{\"u}r fr{\"u}he Stadien der Muskeldifferenzierung Relevanz haben k{\"o}nnen. Ausgehend von diesem Befund wurde begonnen, noch unbekannte Signalwege zu identifizieren, welche die Ausbildung von Costameren kontrollieren: In den Vorl{\"a}uferstrukturen der Costamere gelang es, eine transiente Interaktion der Proteine Paxillin und Ponsin zu identifizieren. Biochemische Untersuchungen legen nahe, dass Ponsin {\"u}ber eine Skelettmuskel-spezifische Insertion im Carboxyterminus das Adapterprotein Nck2 in diesen Komplex rekrutiert. Es wird vorgeschlagen, dass die drei Proteine einen tern{\"a}ren Signalkomplex bilden, der die Umbauvorg{\"a}nge der Zell-Matrix-Kontakte kontrolliert und dessen Aktivit{\"a}t von mitogen activated protein kinases (MAPK) reguliert wird.Die Anpassungsvorg{\"a}nge der Strukturen der Kraft{\"u}bertragung an pathologische Situtation (Kardiomyopathien) in der adulten quergestreiften Muskulatur wurden ausgehend von einem zweiten Protein, dem muscle LIM protein (MLP), untersucht. Es konnte gezeigt werden, dass ein mutiertes MLP-Protein, das im Menschen eine hypertrophe Kardiomyopathie (HCM) ausl{\"o}st, strukturelle Defekte aufweist und weniger stabil ist. Weiterhin zeigte dieses mutierte Protein eine verringerte Bindungsf{\"a}higkeit an die beiden Liganden N-RAP und alpha-Actinin. Die molekulare Grundlage der HCM-verursachenden Mutationen im MLP-Gen k{\"o}nnte folglich eine Ver{\"a}nderung der Hom{\"o}ostase im tern{\"a}ren Komplex MLP \– N-RAP \– alpha-Actinin sein. Die Expressionsdaten eines neu generierten monoklonalen MLP-Antik{\"o}rpers deuten darauf hin, dass die Funktionen des MLP nicht nur f{\"u}r die Integrit{\"a}t des Myokards, sondern auch f{\"u}r die der Skelettmuskulatur notwendig sind.}, subject = {Herzmuskelkrankheit}, language = {de} } @phdthesis{Bischofs2004, author = {Bischofs, Ilka Bettina}, title = {Elastic interactions of cellular force patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001767}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gewebezellen sammeln st{\"a}ndig Informationen {\"u}ber die mechanischen Eigenschaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kr{\"a}fte werden an Zell-Matrix-Kontakten {\"u}bertragen, die als Mechanosensoren fungieren. J{\"u}ngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen sehr empfindlich auf Ver{\"a}nderungen der effektiven Steifigkeit ihrer Umgebung reagieren, die zu einer Reorganisation des Zytoskeletts f{\"u}hren k{\"o}nnen. In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbstorganisation von Zellen in weichen Materialien vorherzusagen. Obwohl das Zellverhalten durch komplexe regulatorische Vorg{\"a}nge in der Zelle gesteuert wird, scheint die typische Antwort von Zellen auf mechanische Reize eine einfache Pr{\"a}ferenz f{\"u}r große effektive Steifigkeit der Umgebung zu sein, m{\"o}glicherweise weil in einer steiferen Umgebung Kr{\"a}fte an den Kontakten effektiver aufgebaut werden k{\"o}nnen. Der Begriff Steifigkeit umfasst dabei sowohl Effekte, die durch gr{\"o}ßere H{\"a}rte als auch durch elastische Verzerrungsfelder in der Umgebung verursacht werden. Diese Beobachtung kann man als ein Extremalprinzip in der Elastizit{\"a}tstheorie formulieren. Indem man das zellul{\"a}re Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken, und die Umgebung selbst als linear elastisches Material modelliert, kann damit die optimale Orientierung und Position von Zellen vorhergesagt werden. Es werden mehrere praktisch relevante Beispiele f{\"u}r Zellorganisation theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der N{\"a}he von Grenzfl{\"a}chen f{\"u}r verschiedene Geometrien und Randbedingungen des elastischen Mediums. Daf{\"u}r werden die entsprechenden elastischen Randwertprobleme in Vollraum, Halbraum und Kugel exakt gel{\"o}st. Die Vorhersagen des Models stimmen hervorragend mit experimentellen Befunden f{\"u}r Fibroblastzellen {\"u}berein, sowohl auf elastischen Substraten als auch in physiologischen Hydrogelen. Mechanisch aktive Zellen wie Fibroblasten k{\"o}nnen auch elastisch miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositionen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der Einfluss stochastischer St{\"o}rungen auf die Strukturbildung untersucht. Das vorliegende Model tr{\"a}gt nicht nur zu einem besseren Verst{\"a}ndnis von vielen physiologischen Situationen bei, sondern k{\"o}nnte in Zukunft auch f{\"u}r biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle f{\"u}r k{\"u}nstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen, Materialeigenschaften oder Zelldichte zu optimieren.}, language = {en} }