@phdthesis{Wegerich2010, author = {Wegerich, Franziska}, title = {Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50782}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated.}, language = {en} } @phdthesis{Brechun2019, author = {Brechun, Katherine E.}, title = {Development and application of genetic networks for engineering photo-controlled proteins}, doi = {10.25932/publishup-43092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430924}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 195}, year = {2019}, abstract = {Light-switchable proteins are being used increasingly to understand and manipulate complex molecular systems. The success of this approach has fueled the development of tailored photo-switchable proteins, to enable targeted molecular events to be studied using light. The development of novel photo-switchable tools has to date largely relied on rational design. Complementing this approach with directed evolution would be expected to facilitate these efforts. Directed evolution, however, has been relatively infrequently used to develop photo-switchable proteins due to the challenge presented by high-throughput evaluation of switchable protein activity. This thesis describes the development of two genetic circuits that can be used to evaluate libraries of switchable proteins, enabling optimization of both the on- and off-states. A screening system is described, which permits detection of DNA-binding activity based on conditional expression of a fluorescent protein. In addition, a tunable selection system is presented, which allows for the targeted selection of protein-protein interactions of a desired affinity range. This thesis additionally describes the development and characterization of a synthetic protein that was designed to investigate chromophore reconstitution in photoactive yellow protein (PYP), a promising scaffold for engineering photo-controlled protein tools.}, language = {en} }