@phdthesis{Wettstein2015, author = {Wettstein, Christoph}, title = {Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78367}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2015}, abstract = {Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs' binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications.}, language = {en} } @phdthesis{Schlossarek2023, author = {Schlossarek, Dennis}, title = {Identification of dynamic protein-metabolite complexes in saccharomyces cerevisiae using co-fractionation mass spectrometry}, doi = {10.25932/publishup-58282}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582826}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2023}, abstract = {Cells are built from a variety of macromolecules and metabolites. Both, the proteome and the metabolome are highly dynamic and responsive to environmental cues and developmental processes. But it is not their bare numbers, but their interactions that enable life. The protein-protein (PPI) and protein-metabolite interactions (PMI) facilitate and regulate all aspects of cell biology, from metabolism to mitosis. Therefore, the study of PPIs and PMIs and their dynamics in a cell-wide context is of great scientific interest. In this dissertation, I aim to chart a map of the dynamic PPIs and PMIs across metabolic and cellular transitions. As a model system, I study the shift from the fermentative to the respiratory growth, known as the diauxic shift, in the budding yeast Saccharomyces cerevisiae. To do so, I am applying a co-fractionation mass spectrometry (CF-MS) based method, dubbed protein metabolite interactions using size separation (PROMIS). PROMIS, as well as comparable methods, will be discussed in detail in chapter 1. Since PROMIS was developed originally for Arabidopsis thaliana, in chapter 2, I will describe the adaptation of PROMIS to S. cerevisiae. Here, the obtained results demonstrated a wealth of protein-metabolite interactions, and experimentally validated 225 previously predicted PMIs. Applying orthogonal, targeted approaches to validate the interactions of a proteogenic dipeptide, Ser-Leu, five novel protein-interactors were found. One of those proteins, phosphoglycerate kinase, is inhibited by Ser-Leu, placing the dipeptide at the regulation of glycolysis. In chapter 3, I am presenting PROMISed, a novel web-tool designed for the analysis of PROMIS- and other CF-MS-datasets. Starting with raw fractionation profiles, PROMISed enables data pre-processing, profile deconvolution, scores differences in fractionation profiles between experimental conditions, and ultimately charts interaction networks. PROMISed comes with a user-friendly graphic interface, and thus enables the routine analysis of CF-MS data by non-computational biologists. Finally, in chapter 4, I applied PROMIS in combination with the isothermal shift assay to the diauxic shift in S. cerevisiae to study changes in the PPI and PMI landscape across this metabolic transition. I found a major rewiring of protein-protein-metabolite complexes, exemplified by the disassembly of the proteasome in the respiratory phase, the loss of interaction of an enzyme involved in amino acid biosynthesis and its cofactor, as well as phase and structure specific interactions between dipeptides and enzymes of central carbon metabolism. In chapter 5, I am summarizing the presented results, and discuss a strategy to unravel the potential patterns of dipeptide accumulation and binding specificities. Lastly, I recapitulate recently postulated guidelines for CF-MS experiments, and give an outlook of protein interaction studies in the near future.}, language = {en} } @phdthesis{Lengefeld2010, author = {Lengefeld, Jan}, title = {Zirkulardichroismus-Messungen mit Synchrotronstrahlung am BESSY : M{\"o}glichkeiten und Grenzen bei der Untersuchung biologischer Proben}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44263}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In dieser Arbeit wurden die M{\"o}glichkeiten und Grenzen f{\"u}r Zirkulardichroismus-Messungen mit Synchrotronstrahlung untersucht. Dazu wurde ein Messaufbau f{\"u}r Zirkulardichroismus-Messungen an zwei Strahlrohren am Berliner Elektronenspeicherring f{\"u}r Synchrotronstrahlung eingesetzt, die f{\"u}r Messungen im Bereich des ultravioletten Lichts geeignet sind. Eigenschaften der Strahlrohre und des Messaufbau wurden in einigen wichtigen Punkten mit kommerziellen Zirkulardichroismus-Spektrometern verglichen. Der Schwerpunkt lag auf der Ausdehnung des zug{\"a}nglichen Wellenl{\"a}ngenbereichs unterhalb von 180 nm zur Untersuchung des Zirkulardichroismus von Proteinen in diesem Bereich. In diesem Bereich ist es nicht nur die Lichtquelle sondern vor allem die Absorption des Lichts durch Wasser, die den Messbereich bei der Messung biologischer Proben in w{\"a}ssriger L{\"o}sung einschr{\"a}nkt. Es wurden Bedingungen gefunden, unter denen der Messbereich auf etwa 160 nm, in einigen F{\"a}llen bis auf 130 nm ausgedehnt werden konnte. Dazu musste die Pfadl{\"a}nge deutlich reduziert werden und verschieden Probenk{\"u}vetten wurden getestet. Der Einfluss der dabei auftretenden Spannungsdoppelbrechung in den Probenk{\"u}vetten auf das Messsignal konnte mit einem alternativen Messaufbau deutlich reduziert werden. Systematische Fehler im Messsignal und auftretende Strahlensch{\"a}den begrenzen jedoch die Zuverl{\"a}ssigkeit der gemessenen Spektren. Bei Proteinfilmen schr{\"a}nkt die Absorption von Wasser den Messbereich kaum ein. Es wurden jedoch meist deutliche Unterschiede zwischen den Spektren von Proteinfilmen und den Spektren von Proteinen in w{\"a}ssriger L{\"o}sung festgestellt. Solange diese Unterschiede nicht minimiert werden k{\"o}nnen, stellen Proteinfilme keine praktikable Alternative zu Messungen in w{\"a}ssriger L{\"o}sung dar.}, language = {de} } @phdthesis{Buller2013, author = {Buller, Jens}, title = {Entwicklung neuer stimuli-sensitiver Hydrogelfilme als Plattform f{\"u}r die Biosensorik}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66261}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Diese Arbeit befasst sich mit der Synthese und der Charakterisierung von thermoresponsiven Polymeren und ihrer Immobilisierung auf festen Oberfl{\"a}chen als nanoskalige d{\"u}nne Schichten. Dabei wurden thermoresponsive Polymere vom Typ der unteren kritischen Entmischungstemperatur (engl.: lower critical solution temperature, LCST) verwendet. Sie sind bei niedrigeren Temperaturen im L{\"o}sungsmittel gut und nach Erw{\"a}rmen oberhalb einer bestimmten kritischen Temperatur nicht mehr l{\"o}slich; d. h. sie weisen bei einer bestimmten Temperatur einen Phasen{\"u}bergang auf. Als Basismaterial wurden verschiedene thermoresponsive und biokompatible Polymere basierend auf Diethylenglykolmethylethermethacrylat (MEO2MA) und Oligo(ethylenglykol)methylethermethacrylat (OEGMA475, Mn = 475 g/ mol) {\"u}ber frei radikalische Copolymerisation synthetisiert. Der thermoresponsive Phasen{\"u}bergang der Copolymere wurde in w{\"a}ssriger L{\"o}sung und in gequollenen vernetzten d{\"u}nnen Schichten beobachtet. Außerdem wurde untersucht, inwiefern eine selektive Proteinbindung an geeignete funktionalisierte Copolymere die Phasen{\"u}bergangstemperatur beeinflusst. Die thermoresponsiven Copolymere wurden {\"u}ber photovernetzbare Gruppen auf festen Oberfl{\"a}chen immobilisiert. Die n{\"o}tigen lichtempfindlichen Vernetzereinheiten wurden mittels des polymerisierbaren Benzophenonderivates 2 (4 Benzoylphenoxy)ethylmethacrylat (BPEM) in das Copolymer integriert. D{\"u}nne Filme der Copolymere mit ca. 100 nm Schichtdicke wurden {\"u}ber Rotationsbeschichtung auf Siliziumwafer aufgeschleudert und anschließend durch Bestrahlung mit UV Licht vernetzt und auf der Oberfl{\"a}che immobilisiert. Die Filme sind stabiler je gr{\"o}ßer der Vernetzeranteil und je gr{\"o}ßer die Molmasse der Copolymere ist. Bei einem Waschprozess nach der Vernetzung wird beispielsweise aus einem Film mit moderater Molmasse und geringem Vernetzeranteil mehr unvernetztes Copolymer ausgewaschen als bei einem h{\"o}hermolekularen Copolymer mit hohem Vernetzeranteil. Die Quellbarkeit der Polymerschichten wurde mit Ellipsometrie untersucht. Sie ist gr{\"o}ßer je geringer der Vernetzeranteil in den Copolymeren ist. Schichten aus thermoresponsiven OEG Copolymeren zeigen einen Volumenphasen{\"u}bergang vom Typ der LCST. Der thermoresponsive Kollaps der Schichten ist komplett reversibel, die Kollapstemperatur kann {\"u}ber die Zusammensetzung der Copolymere eingestellt werden. F{\"u}r einen Vergleich dieser Eigenschaften mit dem gut charakterisierten und derzeit wohl am h{\"a}ufigsten untersuchten thermoresponsiven Polymer Poly(N-isopropylacrylamid) (PNIPAM) wurden zus{\"a}tzlich photovernetzte Schichten aus PNIPAM hergestellt und ebenfalls ellipsometrisch vermessen. Im Vergleich zu PNIPAM verl{\"a}uft der Phasen{\"u}bergang der Schichten aus den Copolymeren mit Oligo(ethylenglykol)-seitenketten (OEG Copolymere) {\"u}ber einen gr{\"o}ßeren Temperaturbereich. Mit Licht einer Wellenl{\"a}nge > 300 nm wurden die photosensitiven Benzophenongruppen selektiv angeregt. Bei der Verwendung kleinerer Wellenl{\"a}ngen vernetzten die Copolymerschichten auch ohne die Anwesenheit der lichtempfindlichen Benzophenongruppen. Dieser Effekt ließ sich zur kontrollierten Immobilisierung und Vernetzung der OEG Copolymere einsetzen. Als weitere Methode zur Immobilisierung der Copolymere wurde die Anbindung {\"u}ber Amidbindungen untersucht. Dazu wurden OEG Copolymere mit dem carboxylgruppenhaltigen 2 Succinyloxyethylmethacrylat (MES) auf mit 3 Aminopropyldimethylethoxysilan (APDMSi) silanisierte Siliziumwafer rotationsbeschichtet, und mit dem oligomeren α, ω Diamin Jeffamin® ED 900 vernetzt. Die Vernetzungsreaktion erfolgte ohne weitere Zus{\"a}tze durch Erhitzen der Proben. Die Hydrogelschichten waren anschließend stabil und zeigten neben thermoresponsivem auch pH responsives Verhalten. Um zu untersuchen, ob die Phasen{\"u}bergangstemperatur durch eine Proteinbindung beeinflusst werden kann, wurde ein polymerisierbares Biotinderivat 2 Biotinyl-aminoethylmethacrylat (BAEMA) in das thermoresponsive Copolymer eingebaut. Der Einfluss des biotinbindenen Proteins Avidin auf das thermoresponsive Verhalten des Copolymers in L{\"o}sung wurde untersucht. Die spezifische Bindung von Avidin an das biotinylierte Copolymer verschob die {\"U}bergangstemperatur deutlich zu h{\"o}heren Temperaturen. Kontrollversuche zeigten, dass dieses Verhalten auf eine selektive Proteinbindung zur{\"u}ckzuf{\"u}hren ist. Thermoresponsive OEG Copolymere mit photovernetzbaren Gruppen aus BPEM und Biotingruppen aus BAEMA wurden {\"u}ber Rotationsbeschichtung auf Gold- und auf Siliziumoberfl{\"a}chen aufgetragen und durch UV Strahlung vernetzt. Die spezifische Bindung von Avidin an die Copolymerschicht wurde mit Oberfl{\"a}chenplasmonenresonanz und Ellipsometrie untersucht. Die Bindungskapazit{\"a}t der Schichten war umso gr{\"o}ßer, je kleiner der Vernetzeranteil, d. h. je gr{\"o}ßer die Maschenweite des Netzwerkes war. Die Quellbarkeit der Schichten wurde durch die Avidinbindung erh{\"o}ht. Bei hochgequollenen Systemen verursachte eine Mehrfachbindung des tetravalenten Avidins allerdings eine zus{\"a}tzliche Quervernetzung des Polymernetzwerkes. Dieser Effekt wirkt der erh{\"o}hten Quellbarkeit durch die Avidinbindung entgegen und l{\"a}sst die Polymernetzwerke schrumpfen.}, language = {de} } @phdthesis{Bishop2022, author = {Bishop, Christopher Allen}, title = {Influence of dairy intake on odd-chain fatty acids and energy metabolism}, doi = {10.25932/publishup-56154}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561541}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104, xv}, year = {2022}, abstract = {As of late, epidemiological studies have highlighted a strong association of dairy intake with lower disease risk, and similarly with an increased amount of odd-chain fatty acids (OCFA). While the OCFA also demonstrate inverse associations with disease incidence, the direct dietary sources and mode of action of the OCFA remain poorly understood. The overall aim of this thesis was to determine the impact of two main fractions of dairy, milk fat and milk protein, on OCFA levels and their influence on health outcomes under high-fat (HF) diet conditions. Both fractions represent viable sources of OCFA, as milk fats contain a significant amount of OCFA and milk proteins are high in branched chain amino acids (BCAA), namely valine (Val) and isoleucine (Ile), which can produce propionyl-CoA (Pr-CoA), a precursor for endogenous OCFA synthesis, while leucine (Leu) does not. Additionally, this project sought to clarify the specific metabolic effects of the OCFA heptadecanoic acid (C17:0). Both short-term and long-term feeding studies were performed using male C57BL/6JRj mice fed HF diets supplemented with milk fat or C17:0, as well as milk protein or individual BCAA (Val; Leu) to determine their influences on OCFA and metabolic health. Short-term feeding revealed that both milk fractions induce OCFA in vivo, and the increases elicited by milk protein could be, in part, explained by Val intake. In vitro studies using primary hepatocytes further showed an induction of OCFA after Val treatment via de novo lipogenesis and increased α-oxidation. In the long-term studies, both milk fat and milk protein increased hepatic and circulating OCFA levels; however, only milk protein elicited protective effects on adiposity and hepatic fat accumulation—likely mediated by the anti-obesogenic effects of an increased Leu intake. In contrast, Val feeding did not increase OCFA levels nor improve obesity, but rather resulted in glucotoxicity-induced insulin resistance in skeletal muscle mediated by its metabolite 3-hydroxyisobutyrate (3-HIB). Finally, while OCFA levels correlated with improved health outcomes, C17:0 produced negligible effects in preventing HF-diet induced health impairments. The results presented herein demonstrate that the beneficial health outcomes associated with dairy intake are likely mediated through the effects of milk protein, while OCFA levels are likely a mere association and do not play a significant causal role in metabolic health under HF conditions. Furthermore, the highly divergent metabolic effects of the two BCAA, Leu and Val, unraveled herein highlight the importance of protein quality.}, language = {en} } @phdthesis{Banerjee2020, author = {Banerjee, Pallavi}, title = {Glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins tethered to lipid bilayers}, doi = {10.25932/publishup-48956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489561}, school = {Universit{\"a}t Potsdam}, pages = {xv, 141}, year = {2020}, abstract = {Glycosylphosphatidylinositols (GPIs) are highly complex glycolipids that serve as membrane anchors to a large variety of eukaryotic proteins. These are covalently attached to a group of peripheral proteins called GPI-anchored proteins (GPI-APs) through a post-translational modification in the endoplasmic reticulum. The GPI anchor is a unique structure composed of a glycan, with phospholipid tail at one end and a phosphoethanolamine linker at the other where the protein attaches. The glycan part of the GPI comprises a conserved pseudopentasaccharide core that could branch out to carry additional glycosyl or phosphoethanolamine units. GPI-APs are involved in a diverse range of cellular processes, few of which are signal transduction, protein trafficking, pathogenesis by protozoan parasites like the malaria- causing parasite Plasmodium falciparum. GPIs can also exist freely on the membrane surface without an attached protein such as those found in parasites like Toxoplasma gondii, the causative agent of Toxoplasmosis. These molecules are both structurally and functionally diverse, however, their structure-function relationship is still poorly understood. This is mainly because no clear picture exists regarding how the protein and the glycan arrange with respect to the lipid layer. Direct experimental evidence is rather scarce, due to which inconclusive pictures have emerged, especially regarding the orientation of GPIs and GPI-APs on membrane surfaces and the role of GPIs in membrane organization. It appears that computational modelling through molecular dynamics simulations would be a useful method to make progress. In this thesis, we attempt to explore characteristics of GPI anchors and GPI-APs embedded in lipid bilayers by constructing molecular models at two different resolutions - all-atom and coarse-grained. First, we show how to construct a modular molecular model of GPIs and GPI-anchored proteins that can be readily extended to a broad variety of systems, addressing the micro-heterogeneity of GPIs. We do so by creating a hybrid link to which GPIs of diverse branching and lipid tails of varying saturation with their optimized force fields, GLYCAM06 and Lipid14 respectively, can be attached. Using microsecond simulations, we demonstrate that GPI prefers to "flop-down" on the membrane, thereby, strongly interacting with the lipid heads, over standing upright like a "lollipop". Secondly, we extend the model of the GPI core to carry out a systematic study of the structural aspects of GPIs carrying different side chains (parasitic and human GPI variants) inserted in lipid bilayers. Our results demonstrate the importance of the side branch residues as these are the most accessible, and thereby, recognizable epitopes. This finding qualitatively agrees with experimental observations that highlight the role of the side branches in immunogenicity of GPIs and the specificity thereof. The overall flop-down orientation of the GPIs with respect to the bilayer surface presents the side chain residues to face the solvent. Upon attaching the green fluorescent protein (GFP) to the GPI, it is seen to lie in close proximity to the bilayer, interacting both with the lipid heads and glycan part of the GPI. However the orientation of GFP is sensitive to the type of GPI it is attached to. Finally, we construct a coarse-grained model of the GPI and GPI-anchored GFP using a modified version of the MARTINI force-field, using which the timescale is enhanced by at least an order of magnitude compared to the atomistic system. This study provides a theoretical perspective on the conformational behavior of the GPI core and some of its branched variations in presence of lipid bilayers, as well as draws comparisons with experimental observations. Our modular atomistic model of GPI can be further employed to study GPIs of variable branching, and thereby, aid in designing future experiments especially in the area of vaccines and drug therapies. Our coarse-grained model can be used to study dynamic aspects of GPIs and GPI-APs w.r.t plasma membrane organization. Furthermore, the backmapping technique of converting coarse-grained trajectory back to the atomistic model would enable in-depth structural analysis with ample conformational sampling.}, language = {en} }