@phdthesis{Pramanik2023, author = {Pramanik, Shreya}, title = {Protein reconstitution in giant vesicles}, doi = {10.25932/publishup-61278}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612781}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 132}, year = {2023}, abstract = {Das Leben auf der Erde ist vielf{\"a}ltig und reicht von einzelligen Organismen bis hin zu mehrzelligen Lebewesen wie dem Menschen. Obwohl es Theorien dar{\"u}ber gibt, wie sich diese Organismen entwickelt haben k{\"o}nnten, verstehen wir nur wenig dar{\"u}ber, wie "Leben" aus Molek{\"u}len entstanden ist. Die synthetische Bottom-up-Biologie zielt darauf ab, minimale Zellen zu schaffen, indem sie verschiedene Module wie Kompartimentierung, Wachstum, Teilung und zellul{\"a}re Kommunikation kombiniert. Alle lebenden Zellen haben eine Membran, die sie von dem sie umgebenden w{\"a}ssrigen Medium trennt und sie sch{\"u}tzt. Dar{\"u}ber hinaus haben alle eukaryotischen Zellen Organellen, die von intrazellul{\"a}ren Membranen umschlossen sind. Jede Zellmembran besteht haupts{\"a}chlich aus einer Lipiddoppelschicht mit Membranproteinen. Lipide sind amphiphile Molek{\"u}le, die molekulare Doppelschichten aus zwei Lipid-Monoschichten oder Bl{\"a}ttchen bilden. Die hydrophoben Ketten der Lipide sind einander zugewandt, w{\"a}hrend ihre hydrophilen Kopfgruppen die Grenzfl{\"a}chen zur w{\"a}ssrigen Umgebung bilden. Riesenvesikel sind Modellmembransysteme, die Kompartimente mit einer Gr{\"o}ße von mehreren Mikrometern bilden und von einer einzigen Lipiddoppelschicht umgeben sind. Die Gr{\"o}ße der Riesenvesikel ist mit der Gr{\"o}ße von Zellen vergleichbar und macht sie zu guten Membranmodellen, die mit einem Lichtmikroskop untersucht werden k{\"o}nnen. Allerdings fehlen den Riesenvesikelmembranen nach der ersten Pr{\"a}paration Membranproteine, die in weiteren Pr{\"a}parationsschritten in diese Membranen eingebaut werden m{\"u}ssen. Je nach Protein kann es entweder {\"u}ber Ankerlipide an eines der Membranbl{\"a}ttchen gebunden oder {\"u}ber seine Transmembrandom{\"a}nen in die Lipiddoppelschicht eingebaut werden. Diese Arbeit befasst sich mit der Herstellung von Riesenvesikeln und der Rekonstitution von Proteinen in diesen Vesikeln. Außerdem wird ein mikrofluidischer Chip entworfen, der in verschiedenen Experimenten verwendet werden kann. Die Ergebnisse dieser Arbeit werden anderen Forschern helfen, die Protokolle f{\"u}r die Herstellung von GUVs zu verstehen, Proteine in GUVs zu rekonstituieren und Experimente mit dem mikrofluidischen Chip durchzuf{\"u}hren. Auf diese Weise wird die vorliegende Arbeit f{\"u}r das langfristige Ziel von Nutzen sein, die verschiedenen Module der synthetischen Biologie zu kombinieren, um eine Minimalzelle zu schaffen.}, language = {en} } @phdthesis{Niedl2015, author = {Niedl, Robert Raimund}, title = {Nichtlineare Kinetik und responsive Hydrogele f{\"u}r papierbasierte Schnelltestanwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77735}, school = {Universit{\"a}t Potsdam}, pages = {iv, 128}, year = {2015}, abstract = {Viele klinische Schnelltestsysteme ben{\"o}tigen vorpr{\"a}parierte oder aufgereinigte Analyte mit frisch hergestellten L{\"o}sungen. Fernab standardisierter Laborbedingungen wie z.B. in Entwicklungsl{\"a}ndern oder Krisengebieten sind solche Voraussetzungen oft nur unter einem hohen Aufwand herstellbar. Zus{\"a}tzlich stellt die erforderliche Sensitivit{\"a}t die Entwicklung einfach zu handhabender Testsysteme vor große Herausforderungen. Autokatalytische Reaktionen, die sich mit Hilfe sehr geringer Initiatorkonzentrationen ausl{\"o}sen lassen, k{\"o}nnen hier eine Perspektive f{\"u}r Signalverst{\"a}rkungsprozesse bieten. Aus diesem Grund wird im ersten Teil der vorliegenden Arbeit das Verhalten der autokatalytischen Arsenit-Jodat-Reaktion in einem mikrofluidischen Kanal untersucht. Dabei werden insbesondere die diffusiven und konvektiven Einfl{\"u}sse auf die Reaktionskinetik im Vergleich zu makroskopischen Volumenmengen betrachtet. Im zweiten Teil werden thermoresponsive Hydrogele mit einem kanalstrukturierten Papiernetzwerk zu einem neuartigen, kapillargetriebenen, extern steuerbaren Mikrofluidik-System kombiniert. Das hier vorgestellte Konzept durch Hydrogele ein papierbasiertes LOC-System zu steuern, erm{\"o}glicht zuk{\"u}nftig die Herstellung von komplexeren, steuerbaren Point-Of-Care Testsystemen (POCT). Durch z.B. einen thermischen Stimulus, wird das L{\"o}sungsverhalten eines Hydrogels so ver{\"a}ndert, dass die gespeicherte Fl{\"u}ssigkeit freigesetzt und durch die Kapillarkraft des Papierkanals ins System transportiert wird. Die Eigenschaften dieses Gelnetzwerks k{\"o}nnen dabei so eingestellt werden, dass eine Freisetzung von Fl{\"u}ssigkeiten sogar bei K{\"o}rpertemperatur m{\"o}glich w{\"a}re und damit eine Anwendung g{\"a}nzlich ohne weitere Hilfsmittel denkbar ist. F{\"u}r die Anwendung notwendige Chemikalien oder Enzyme lassen sich hierbei bequem in getrocknetem Zustand im Papiersubstrat vorlagern und bei Bedarf in L{\"o}sung bringen. Im abschließenden dritten Teil der Arbeit wird ein durch Hydrogele betriebener, Antik{\"o}rper-basierter Mikroorganismenschnelltest f{\"u}r Escherichia coli pr{\"a}sentiert. Dar{\"u}ber hinaus wird weiterf{\"u}hrend eine einfache Methode zur Funktionalisierung eines Hydrogels mit Biomolek{\"u}len {\"u}ber EDC/NHS-Kopplung vorgestellt.}, language = {de} } @phdthesis{Kirschbaum2009, author = {Kirschbaum, Michael}, title = {A microfluidic approach for the initiation and investigation of surface-mediated signal transduction processes on a single-cell level}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39576}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {For the elucidation of the dynamics of signal transduction processes that are induced by cellular interactions, defined events along the signal transduction cascade and subsequent activation steps have to be analyzed and then also correlated with each other. This cannot be achieved by ensemble measurements because averaging biological data ignores the variability in timing and response patterns of individual cells and leads to highly blurred results. Instead, only a multi-parameter analysis at a single-cell level is able to exploit the information that is crucially needed for deducing the signaling pathways involved. The aim of this work was to develop a process line that allows the initiation of cell-cell or cell-particle interactions while at the same time the induced cellular reactions can be analyzed at various stages along the signal transduction cascade and correlated with each other. As this approach requires the gentle management of individually addressable cells, a dielectrophoresis (DEP)-based microfluidic system was employed that provides the manipulation of microscale objects with very high spatiotemporal precision and without the need of contacting the cell membrane. The system offers a high potential for automation and parallelization. This is essential for achieving a high level of robustness and reproducibility, which are key requirements in order to qualify this approach for a biomedical application. As an example process for intercellular communication, T cell activation has been chosen. The activation of the single T cells was triggered by contacting them individually with microbeads that were coated with antibodies directed against specific cell surface proteins, like the T cell receptor-associated kinase CD3 and the costimulatory molecule CD28 (CD; cluster of differentiation). The stimulation of the cells with the functionalized beads led to a rapid rise of their cytosolic Ca2+ concentration which was analyzed by a dual-wavelength ratiometric fluorescence measurement of the Ca2+-sensitive dye Fura-2. After Ca2+ imaging, the cells were isolated individually from the microfluidic system and cultivated further. Cell division and expression of the marker molecule CD69 as a late activation event of great significance were analyzed the following day and correlated with the previously recorded Ca2+ traces for each individual cell. It turned out such that the temporal profile of the Ca2+ traces between both activated and non-activated cells as well as dividing and non-dividing cells differed significantly. This shows that the pattern of Ca2+ signals in T cells can provide early information about a later reaction of the cell. As isolated cells are highly delicate objects, a precondition for these experiments was the successful adaptation of the system to maintain the vitality of single cells during and after manipulation. In this context, the influences of the microfluidic environment as well as the applied electric fields on the vitality of the cells and the cytosolic Ca2+ concentration as crucially important physiological parameters were thoroughly investigated. While a short-term DEP manipulation did not affect the vitality of the cells, they showed irregular Ca2+ transients upon exposure to the DEP field only. The rate and the strength of these Ca2+ signals depended on exposure time, electric field strength and field frequency. By minimizing their occurrence rate, experimental conditions were identified that caused the least interference with the physiology of the cell. The possibility to precisely control the exact time point of stimulus application, to simultaneously analyze short-term reactions and to correlate them with later events of the signal transduction cascade on the level of individual cells makes this approach unique among previously described applications and offers new possibilities to unravel the mechanisms underlying intercellular communication.}, language = {en} } @phdthesis{Gerling2022, author = {Gerling, Marten Tobias}, title = {A microfluidic system for high-precision image-based live cell sorting using dielectrophoretic forces}, doi = {10.25932/publishup-58742}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587421}, school = {Universit{\"a}t Potsdam}, pages = {vii, 87, VI}, year = {2022}, abstract = {An important goal in biotechnology and (bio-) medical research is the isolation of single cells from a heterogeneous cell population. These specialised cells are of great interest for bioproduction, diagnostics, drug development, (cancer) therapy and research. To tackle emerging questions, an ever finer differentiation between target cells and non-target cells is required. This precise differentiation is a challenge for a growing number of available methods. Since the physiological properties of the cells are closely linked to their morphology, it is beneficial to include their appearance in the sorting decision. For established methods, this represents a non addressable parameter, requiring new methods for the identification and isolation of target cells. Consequently, a variety of new flow-based methods have been developed and presented in recent years utilising 2D imaging data to identify target cells within a sample. As these methods aim for high throughput, the devices developed typically require highly complex fluid handling techniques, making them expensive while offering limited image quality. In this work, a new continuous flow system for image-based cell sorting was developed that uses dielectrophoresis to precisely handle cells in a microchannel. Dielectrophoretic forces are exerted by inhomogeneous alternating electric fields on polarisable particles (here: cells). In the present system, the electric fields can be switched on and off precisely and quickly by a signal generator. In addition to the resulting simple and effective cell handling, the system is characterised by the outstanding quality of the image data generated and its compatibility with standard microscopes. These aspects result in low complexity, making it both affordable and user-friendly. With the developed cell sorting system, cells could be sorted reliably and efficiently according to their cytosolic staining as well as morphological properties at different optical magnifications. The achieved purity of the target cell population was up to 95\% and about 85\% of the sorted cells could be recovered from the system. Good agreement was achieved between the results obtained and theoretical considerations. The achieved throughput of the system was up to 12,000 cells per hour. Cell viability studies indicated a high biocompatibility of the system. The results presented demonstrate the potential of image-based cell sorting using dielectrophoresis. The outstanding image quality and highly precise yet gentle handling of the cells set the system apart from other technologies. This results in enormous potential for processing valuable and sensitive cell samples.}, language = {en} } @phdthesis{ChandrakanthShetty2021, author = {Chandrakanth Shetty, Sunidhi}, title = {Directed chemical communication in artificial eukaryotic cells}, doi = {10.25932/publishup-53364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-533642}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {Eukaryotic cells can be regarded as complex microreactors capable of performing various biochemical reactions in parallel which are necessary to sustain life. An essential prerequisite for these complex metabolic reactions to occur is the evolution of lipid membrane-bound organelles enabling compartmental- ization of reactions and biomolecules. This allows for a spatiotemporal control over the metabolic reactions within the cellular system. Intracellular organi- zation arising due to compartmentalization is a key feature of all living cells and has inspired synthetic biologists to engineer such systems with bottom-up approaches. Artificial cells provide an ideal platform to isolate and study specific re- actions without the interference from the complex network of biomolecules present in biological cells. To mimic the hierarchical architecture of eukaryotic cells, multi-compartment assemblies with nested liposomal structures also re- ferred to as multi-vesicular vesicles (MVVs) have been widely adopted. Most of the previously reported multi-compartment systems adopt bulk method- ologies which suffer from low yield and poor control over size. Microfluidic strategies help circumvent these issues and facilitate a high-throughput and robust technique to assemble MVVs of uniform size distribution. In this thesis, firstly, the bulk methodologies are explored to build MVVs and implement a synthetic signalling cascade. Next, a polydimethylsiloxane (PDMS)-based microfluidic platform is introduced to build MVVs and the significance of PEGylated lipids for the successful encapsulation of inner com- partments to generate stable multi-compartment systems is highlighted. Next, a novel two-inlet channel PDMS-based microfluidic device to create MVVs encompassing a three-step enzymatic reaction cascade is presented. A directed reaction pathway comprising of the enzymes α-glucosidase (α-Glc), glucose oxidase (GOx), and horseradish peroxidase (HRP) spanning across three compartments via reconstitution of size-selective membrane proteins is described. Furthermore, owing to the monodispersity of our MVVs due to microfluidic strategies, this platform is employed to study the effect of com- partmentalization on reaction kinetics. Further integration of cell-free expression module into the MVVs would allow for gene-mediated signal transduction within artificial eukaryotic cells. Therefore, the chemically inducible cell-free expression of a membrane protein alpha-hemolysin and its further reconstitution into liposomes is carried out. In conclusion, the present thesis aims to build artificial eukaryotic cells to achieve size-selective chemical communication that also show potential for applications as micro reactors and as vehicles for drug delivery.}, language = {en} }