@phdthesis{RamirezRios2004, author = {Ram{\´i}rez R{\´i}os, Liliana Patricia}, title = {Superpara- and paramagnetic polymer colloids by miniemulsion processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001267}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Polymerverkapselte magnetische Nanopartikel versprechen, in der Zukunft sehr erfolgreich bei Anwendungen in der Biologie und der Medizin eingesetzt werden zu k{\"o}nnen z. B. in der Krebstherapie und als Kontrastmittel bei der magnetischen Kernspinresonanztomographie. Diese Arbeit zeigt, dass durch die interdisziplin{\"a}re Kombination verschiedener Techniken Herstellungsverfahren und Eigenschaften solcher Partikel verbessert werden k{\"o}nnen. Unter Miniemulsionen versteht man w{\"a}ssrige Dispersionen relativ stabiler {\"O}ltr{\"o}pfchen, zwischen 30 und 50 nm Gr{\"o}ße. Ein Nanometer (nm) ist der 1.000.000.000ste Teil eines Meters. Ein Haar ist ungef{\"a}hr 60.000 Nanometer breit. Hergestellt werden Miniemulsionen durch Scherung eines Systems bestehend aus {\"O}l, Wasser, Tensid (Seife) und einer weiteren Komponente, dem Hydrophob, das die Tr{\"o}pfchen stabilisieren soll. Die Polymerisation von Miniemulsionen erm{\"o}glicht die Verkapselung anorganischer Materialen z. B. magnetischer Teilchen oder Gadolinium-haltiger Komponenten. Zu Optimierung des Verkapselung, ist es notwendig, die richtige Menge eines geeigneten Tensids zu finden. Die magnetischen polymerverkapselten Nanopartikel, die in einer w{\"a}ssrigen Tr{\"a}gerfl{\"u}ssigkeit dispergiert sind, zeigen in Abh{\"a}ngigkeit von Partikelgr{\"o}ße, Zusammensetzung, elektronischer Beschaffenheit, etc. ein sogenanntes superpara- oder paramagnetisches Verhalten. Superpara- oder paramagnetisches Verhalten bedeutet, dass die Fl{\"u}ssigkeiten in Anwesenheit {\"a}ußerer Magnetfeldern ihre Fließf{\"a}higkeit beibehalten. Wenn das Magnetfeld entfernt wird, haben sie keine Erinnerung mehr daran, unter dem Einfluss eines Magnetfeldes gestanden zu haben, d. h., dass sie nach Abschalten des Magnetfeldes selbst nicht mehr magnetisch sind. Die Vorteile des Miniemulsionsverfahrens sind der hohe Gehalt und die homogene Verteilung magnetischer Teilchen in den einzelnen Nanopartikeln. Außerdem erm{\"o}glicht dieses Verfahren nanostrukturierte Kompositpartikel herzustellen, wie z. B polymerverkapselte Nanopartikel mit Nanoschichten bestehend aus magnetischen Molek{\"u}len.}, language = {en} } @phdthesis{Koc2018, author = {Ko{\c{c}}, Azize}, title = {Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths}, doi = {10.25932/publishup-42328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423282}, school = {Universit{\"a}t Potsdam}, pages = {ii, 117}, year = {2018}, abstract = {In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems.}, language = {en} }