@article{RabeChandraKruegeletal.2021, author = {Rabe, Maximilian Michael and Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Seelig, Stefan A. and Vasishth, Shravan and Engbert, Ralf}, title = {A bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts}, series = {Psychological Review}, volume = {128}, journal = {Psychological Review}, number = {5}, publisher = {American Psychological Association}, address = {Washington}, issn = {0033-295X}, doi = {10.1037/rev0000268}, pages = {803 -- 823}, year = {2021}, abstract = {In eye-movement control during reading, advanced process-oriented models have been developed to reproduce behavioral data. So far, model complexity and large numbers of model parameters prevented rigorous statistical inference and modeling of interindividual differences. Here we propose a Bayesian approach to both problems for one representative computational model of sentence reading (SWIFT; Engbert et al., Psychological Review, 112, 2005, pp. 777-813). We used experimental data from 36 subjects who read the text in a normal and one of four manipulated text layouts (e.g., mirrored and scrambled letters). The SWIFT model was fitted to subjects and experimental conditions individually to investigate between- subject variability. Based on posterior distributions of model parameters, fixation probabilities and durations are reliably recovered from simulated data and reproduced for withheld empirical data, at both the experimental condition and subject levels. A subsequent statistical analysis of model parameters across reading conditions generates model-driven explanations for observable effects between conditions.}, language = {en} } @article{KruegelRothkegelEngbert2020, author = {Kr{\"u}gel, Andr{\´e} and Rothkegel, Lars and Engbert, Ralf}, title = {No exception from Bayes' rule}, series = {Journal of vision}, volume = {20}, journal = {Journal of vision}, number = {7}, publisher = {ARVO}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/jov.20.7.15}, pages = {14}, year = {2020}, abstract = {In an influential theoretical model, human sensorimotor control is achieved by a Bayesian decision process, which combines noisy sensory information and learned prior knowledge. A ubiquitous signature of prior knowledge and Bayesian integration in human perception and motor behavior is the frequently observed bias toward an average stimulus magnitude (i.e., a central-tendency bias, range effect, regression-to-the-mean effect). However, in the domain of eye movements, there is a recent controversy about the fundamental existence of a range effect in the saccadic system. Here we argue that the problem of the existence of a range effect is linked to the availability of prior knowledge for saccade control. We present results from two prosaccade experiments that both employ an informative prior structure (i.e., a nonuniform Gaussian distribution of saccade target distances). Our results demonstrate the validity of Bayesian integration in saccade control, which generates a range effect in saccades. According to Bayesian integration principles, the saccadic range effect depends on the availability of prior knowledge and varies in size as a function of the reliability of the prior and the sensory likelihood.}, language = {en} } @article{KruegelEngbert2010, author = {Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {On the launch-site effect for skipped words during reading}, issn = {0042-6989}, doi = {10.1016/j.visres.2010.05.009}, year = {2010}, abstract = {The launch-site effect, a systematic variation of within-word landing position as a function of launch-site distance, is among the most important oculomotor phenomena in reading. Here we show that the launch-site effect is strongly modulated in word skipping, a finding which is inconsistent with the view that the launch-site effect is caused by a saccadic-range error. We observe that distributions of landing positions in skipping saccades show an increased leftward shift compared to non-skipping saccades at equal launch-site distances. Using an improved algorithm for the estimation of mislocated fixations, we demonstrate the reliability of our results.}, language = {en} } @phdthesis{Kruegel2014, author = {Kr{\"u}gel, Andr{\´e}}, title = {Eye movement control during reading : factors and principles of computing the word center for saccade planning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72599}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Reading is a complex cognitive task based on the analyses of visual stimuli. Due to the physiology of the eye, only a small number of letters around the fixation position can be extracted with high visual acuity, while the visibility of words and letters outside this so-called foveal region quickly drops with increasing eccentricity. As a consequence, saccadic eye movements are needed to repeatedly shift the fovea to new words for visual word identification during reading. Moreover, even within a foveated word fixation positions near the word center are superior to other fixation positions for efficient word recognition (O'Regan, 1981; Brysbaert, Vitu, and Schroyens, 1996). Thus, most reading theories assume that readers aim specifically at word centers during reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). However, saccades' landing positions within words during reading are in fact systematically modulated by the distance of the launch site from the word center (McConkie, Kerr, Reddix, \& Zola, 1988). In general, it is largely unknown how readers identify the center of upcoming target words and there is no computational model of the sensorimotor translation of the decision for a target word into spatial word center coordinates. Here we present a series of three studies which aim at advancing the current knowledge about the computation of saccade target coordinates during saccade planning in reading. Based on a large corpus analyses, we firstly identified word skipping as a further factor beyond the launch-site distance with a likewise systematic and surprisingly large effect on within-word landing positions. Most importantly, we found that the end points of saccades after skipped word are shifted two and more letters to the left as compared to one-step saccades (i.e., from word N to word N+1) with equal launch-site distances. Then we present evidence from a single saccade experiment suggesting that the word-skipping effect results from highly automatic low-level perceptual processes, which are essentially based on the localization of blank spaces between words. Finally, in the third part, we present a Bayesian model of the computation of the word center from primary sensory measurements of inter-word spaces. We demonstrate that the model simultaneously accounts for launch-site and saccade-type contingent modulations of within-word landing positions in reading. Our results show that the spatial saccade target during reading is the result of complex estimations of the word center based on incomplete sensory information, which also leads to specific systematic deviations of saccades' landing positions from the word center. Our results have important implications for current reading models and experimental reading research.}, language = {en} } @article{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Modulation of oculomotor control during reading of mirrored and inverted texts}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-60833-6}, pages = {15}, year = {2020}, abstract = {The interplay between cognitive and oculomotor processes during reading can be explored when the spatial layout of text deviates from the typical display. In this study, we investigate various eye-movement measures during reading of text with experimentally manipulated layout (word-wise and letter-wise mirrored-reversed text as well as inverted and scrambled text). While typical findings (e.g., longer mean fixation times, shorter mean saccades lengths) in reading manipulated texts compared to normal texts were reported in earlier work, little is known about changes of oculomotor targeting observed in within-word landing positions under the above text layouts. Here we carry out precise analyses of landing positions and find substantial changes in the so-called launch-site effect in addition to the expected overall slow-down of reading performance. Specifically, during reading of our manipulated text conditions with reversed letter order (against overall reading direction), we find a reduced launch-site effect, while in all other manipulated text conditions, we observe an increased launch-site effect. Our results clearly indicate that the oculomotor system is highly adaptive when confronted with unusual reading conditions.}, language = {en} } @misc{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Modulation of oculomotor control during reading of mirrored and inverted texts}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {659}, issn = {1866-8364}, doi = {10.25932/publishup-49487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-494879}, pages = {17}, year = {2020}, abstract = {The interplay between cognitive and oculomotor processes during reading can be explored when the spatial layout of text deviates from the typical display. In this study, we investigate various eye-movement measures during reading of text with experimentally manipulated layout (word-wise and letter-wise mirrored-reversed text as well as inverted and scrambled text). While typical findings (e.g., longer mean fixation times, shorter mean saccades lengths) in reading manipulated texts compared to normal texts were reported in earlier work, little is known about changes of oculomotor targeting observed in within-word landing positions under the above text layouts. Here we carry out precise analyses of landing positions and find substantial changes in the so-called launch-site effect in addition to the expected overall slow-down of reading performance. Specifically, during reading of our manipulated text conditions with reversed letter order (against overall reading direction), we find a reduced launch-site effect, while in all other manipulated text conditions, we observe an increased launch-site effect. Our results clearly indicate that the oculomotor system is highly adaptive when confronted with unusual reading conditions.}, language = {en} } @article{ChandraKruegelEngbert2020, author = {Chandra, Johan and Kr{\"u}gel, Andr{\´e} and Engbert, Ralf}, title = {Experimental test of Bayesian saccade targeting under reversed reading direction}, series = {Attention, Perception, \& Psychophysics}, volume = {82}, journal = {Attention, Perception, \& Psychophysics}, publisher = {Springer}, address = {New York, NY}, issn = {1943-393X}, doi = {10.3758/s13414-019-01814-4}, pages = {1230 -- 1240}, year = {2020}, abstract = {During reading, rapid eye movements (saccades) shift the reader's line of sight from one word to another for high-acuity visual information processing. While experimental data and theoretical models show that readers aim at word centers, the eye-movement (oculomotor) accuracy is low compared to other tasks. As a consequence, distributions of saccadic landing positions indicate large (i) random errors and (ii) systematic over- and undershoot of word centers, which additionally depend on saccade lengths (McConkie et al.Visual Research, 28(10), 1107-1118,1988). Here we show that both error components can be simultaneously reduced by reading texts from right to left in German language (N= 32). We used our experimental data to test a Bayesian model of saccade planning. First, experimental data are consistent with the model. Second, the model makes specific predictions of the effects of the precision of prior and (sensory) likelihood. Our results suggest that it is a more precise sensory likelihood that can explain the reduction of both random and systematic error components.}, language = {en} }