@phdthesis{Niedl2015, author = {Niedl, Robert Raimund}, title = {Nichtlineare Kinetik und responsive Hydrogele f{\"u}r papierbasierte Schnelltestanwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77735}, school = {Universit{\"a}t Potsdam}, pages = {iv, 128}, year = {2015}, abstract = {Viele klinische Schnelltestsysteme ben{\"o}tigen vorpr{\"a}parierte oder aufgereinigte Analyte mit frisch hergestellten L{\"o}sungen. Fernab standardisierter Laborbedingungen wie z.B. in Entwicklungsl{\"a}ndern oder Krisengebieten sind solche Voraussetzungen oft nur unter einem hohen Aufwand herstellbar. Zus{\"a}tzlich stellt die erforderliche Sensitivit{\"a}t die Entwicklung einfach zu handhabender Testsysteme vor große Herausforderungen. Autokatalytische Reaktionen, die sich mit Hilfe sehr geringer Initiatorkonzentrationen ausl{\"o}sen lassen, k{\"o}nnen hier eine Perspektive f{\"u}r Signalverst{\"a}rkungsprozesse bieten. Aus diesem Grund wird im ersten Teil der vorliegenden Arbeit das Verhalten der autokatalytischen Arsenit-Jodat-Reaktion in einem mikrofluidischen Kanal untersucht. Dabei werden insbesondere die diffusiven und konvektiven Einfl{\"u}sse auf die Reaktionskinetik im Vergleich zu makroskopischen Volumenmengen betrachtet. Im zweiten Teil werden thermoresponsive Hydrogele mit einem kanalstrukturierten Papiernetzwerk zu einem neuartigen, kapillargetriebenen, extern steuerbaren Mikrofluidik-System kombiniert. Das hier vorgestellte Konzept durch Hydrogele ein papierbasiertes LOC-System zu steuern, erm{\"o}glicht zuk{\"u}nftig die Herstellung von komplexeren, steuerbaren Point-Of-Care Testsystemen (POCT). Durch z.B. einen thermischen Stimulus, wird das L{\"o}sungsverhalten eines Hydrogels so ver{\"a}ndert, dass die gespeicherte Fl{\"u}ssigkeit freigesetzt und durch die Kapillarkraft des Papierkanals ins System transportiert wird. Die Eigenschaften dieses Gelnetzwerks k{\"o}nnen dabei so eingestellt werden, dass eine Freisetzung von Fl{\"u}ssigkeiten sogar bei K{\"o}rpertemperatur m{\"o}glich w{\"a}re und damit eine Anwendung g{\"a}nzlich ohne weitere Hilfsmittel denkbar ist. F{\"u}r die Anwendung notwendige Chemikalien oder Enzyme lassen sich hierbei bequem in getrocknetem Zustand im Papiersubstrat vorlagern und bei Bedarf in L{\"o}sung bringen. Im abschließenden dritten Teil der Arbeit wird ein durch Hydrogele betriebener, Antik{\"o}rper-basierter Mikroorganismenschnelltest f{\"u}r Escherichia coli pr{\"a}sentiert. Dar{\"u}ber hinaus wird weiterf{\"u}hrend eine einfache Methode zur Funktionalisierung eines Hydrogels mit Biomolek{\"u}len {\"u}ber EDC/NHS-Kopplung vorgestellt.}, language = {de} } @phdthesis{Fandrich2016, author = {Fandrich, Artur}, title = {Untersuchung des Verhaltens von thermoresponsiven Polymeren auf Elektroden in Interaktion mit biomolekularen Systemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396551}, school = {Universit{\"a}t Potsdam}, pages = {111}, year = {2016}, abstract = {Diese Arbeit befasst sich mit der Herstellung und Charakterisierung von thermoresponsiven Filmen auf Goldelektroden durch Fixierung eines bereits synthetisierten thermoresponsiven Polymers. Als Basis f{\"u}r die Entwicklung der responsiven Grenzfl{\"a}che dienten drei unterschiedliche Copolymere (Polymere I, II und III) aus der Gruppe der thermisch schaltbaren Poly(oligo(ethylenglykol)methacrylate). Die turbidimetrischen Messungen der Copolymere in L{\"o}sungen haben gezeigt, dass der Tr{\"u}bungspunkt vom pH-Wert, der Gegenwart von Salzen sowie von der Ionenst{\"a}rke der L{\"o}sung abh{\"a}ngig ist. Nach der Charakterisierung der Polymere in L{\"o}sung wurden Experimente der kovalenten Kopplung der Polymere I bis III an die Oberfl{\"a}che der Gold-Elektroden durchgef{\"u}hrt. W{\"a}hrend bei Polymeren I und II die Ankopplung auf einer Amidverbr{\"u}ckung basierte, wurde bei Polymer III als alternative Methode zur Immobilisierung eine photoinduzierte Anbindung unter gleichzeitiger Vernetzung gew{\"a}hlt. Der Nachweis der erfolgreichen Ankopplung erfolgte bei allen Polymeren elektrochemisch mittels Cyclovoltammetrie und Impedanzspektroskopie in K3/4[Fe(CN)6]-L{\"o}sungen. Wie die Ellipsometrie-Messungen zeigten, waren die erhaltenen Polymer-Filme unterschiedlich dick. Die Ankopplung {\"u}ber Amidverbr{\"u}ckung lieferte d{\"u}nne Filme (10 - 15 nm), w{\"a}hrend der photovernetzte Film deutlich dicker war (70-80 nm) und die darunter liegende Oberfl{\"a}che relativ gut isolierte. Elektrochemische Temperaturexperimente an Polymer-modifizierten Oberfl{\"a}chen in L{\"o}sungen in Gegenwart von K3/4[Fe(CN)6] zeigten, dass auch die immobilisierten Polymere I bis III responsives Temperaturverhalten zeigen. Bei Elektroden mit den immobilisierten Polymeren I und II ist der Temperaturverlauf der Parameterwerte diskontinuierlich - ab einem kritischen Punkt (37 °C f{\"u}r Polymer I und 45 °C f{\"u}r Polymer II) wird zun{\"a}chst langsame Zunahme der Peakstr{\"o}me wird deutlich schneller. Das Temperaturverhalten von Polymer III ist dagegen bis 50 °C kontinuierlich, der Peakstrom sinkt hier durchgehend. Weiterhin wurde mit den auf Polymeren II und III basierten Elektroden deren Anwendung als responsive Matrix f{\"u}r Bioerkennungsreaktionen untersucht. Es wurde die Ankopplung von kleinen Biorezeptoren, TAG-Peptiden, an Polymer II- und Polymer III-modifizierten Elektroden durchgef{\"u}hrt. Das hydrophile FLAG-TAG-Peptid ver{\"a}ndert das Temperaturverhalten des Polymer II-Films unwesentlich, da es die Hydrophilie des Netzwerkes nicht beeinflusst. Weiterhin wurde der Effekt der Ankopplung der ANTI-FLAG-TAG-Antik{\"o}rper an FLAG-TAG-modifizierte Polymer II-Filme untersucht. Es konnte gezeigt werden, dass die Antik{\"o}rper spezifisch an FLAG-TAG-modifiziertes Polymer II binden. Es wurde keine unspezifische Anbindung von ANTI-FLAG-TAG an Polymer II beobachtet. Die Temperaturexperimente haben gezeigt, dass die thermische Restrukturierung des Polymer II-FLAG-TAG-Filmes auch nach der Antik{\"o}rper-Ankopplung noch stattfindet. Der Einfluss der ANTI-FLAG-TAG-Ankopplung ist gering, da der Unterschied in der Hydrophilie zwischen Polymer II und FLAG-TAG bzw. ANTI-FLAG-TAG zu gering ist. F{\"u}r die Untersuchungen mit Polymer III-Elektroden wurde neben dem hydrophilen FLAG-TAG-Peptid das deutlich hydrophobere HA-TAG-Peptid ausgew{\"a}hlt. Wie im Falle der Polymer II Elektrode beeinflusst das gekoppelte FLAG-TAG-Peptid das Temperaturverhalten des Polymer III-Netzwerkes nur geringf{\"u}gig. Die gemessenen Stromwerte sind geringer als bei der Polymer III-Elektrode. Das Temperaturverhalten der FLAG-TAG-Elektrode {\"a}hnelt dem der reinen Polymer III-Elektrode - die Stromwerte sinken kontinuierlich bis die Temperatur von ca. 40 °C erreicht ist, bei der ein Plateau beobachtet wird. Offensichtlich ver{\"a}ndert FLAG-TAG auch in diesem Fall nicht wesentlich die Hydrophilie des Polymer III-Netzwerkes. Das an Polymer III-Elektroden gekoppelte hydrophobe HA-TAG-Peptid beeinflusst dagegen im starken Maße den Quellzustand des Netzwerkes. Die Str{\"o}me f{\"u}r die HA-TAG-Elektroden sind deutlich geringer als die f{\"u}r die FLAG-TAG-Polymer III-Elektroden, was auf geringeren Wassergehalt und dickeren Film zur{\"u}ckzuf{\"u}hren ist. Bereits ab 30 °C erfolgt der Anstieg von Stromwerten, der bei Polymer III- bzw. bei Polymer III-FLAG-TAG-Elektroden nicht beobachtet werden kann. Das gekoppelte hydrophobe HA-TAG-Peptid verdr{\"a}ngt Wasser aus dem Polymer III-Netzwerk, was in der Stauchung des Films bereits bei Raumtemperatur resultiert. Dies f{\"u}hrt dazu, dass der Film im Laufe des Temperaturanstieges kaum noch komprimiert. Die Stromwerte steigen in diesem Fall entsprechend des Anstiegs der temperaturabh{\"a}ngigen Diffusion des Redoxpaares. Diese Untersuchungen zeigen, dass das HA-TAG-Peptid als Ankermolek{\"u}l deutlich besser f{\"u}r eine potentielle Verwendung der Polymer III-Filme f{\"u}r sensorische Zwecke geeignet ist, da es sich deutlich in der Hydrophilie von Polymer III unterscheidet.}, language = {de} } @phdthesis{Enzenberg2015, author = {Enzenberg, Anne}, title = {Neue fluoreszierende Copolymere f{\"u}r sensitive Detektionssysteme in Wasser}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82325}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 156, KK}, year = {2015}, abstract = {Ziel dieser Arbeit war die Synthese und Charakterisierung von neuartigen fluoreszierenden Copolymeren zur Analytdetektion in w{\"a}ssrigen Systemen. Das Detektionssystem sollte ein einfaches Schalten der Fluoreszenz bei Analytbindung „Aus" bzw. Verdr{\"a}ngung „An" erm{\"o}glichen. Daf{\"u}r wurde die Synthese eines funktionalisierten Monomers so geplant, dass sich Fluorophor und Analyt innerhalb derselben Monomereinheit in direkter Nachbarschaft zueinander befinden. So sollten bei Erkennung des Analyten durch eine mit einem Fluoreszenzl{\"o}scher funktionalisierte Erkennungsstruktur Fluorophor und L{\"o}scher in einen vorgegebenen Abstand zueinander gezwungen und die Fluoreszenz des Fluorophors effizient gel{\"o}scht werden. Bei anschließender Verdr{\"a}ngung der Erkennungseinheit durch einen st{\"a}rker bindenden Analyten sollte die Fluoreszenz wieder „angeschaltet" werden. Eine weitere Zielstellung f{\"u}r das Detektionssystem war eine hohe L{\"o}slichkeit und Fluoreszenzintensit{\"a}t in Wasser. Da die Anwendung solcher Sensoren besonders in der Medizin und Biologie, z.B. f{\"u}r Schnellerkennungstest von Pathogenen, von Interesse ist, ist die Kompatibilit{\"a}t mit w{\"a}ssrigen Medien essentiell. Die funktionalisierten Monomere wurden frei radikalisch mit N Vinyl-pyrrolidon bzw. N Vinyl¬caprolactam zu wasserl{\"o}slichen, fluoreszierenden Copolymeren umgesetzt. In den N-Vinyl¬pyrrolidon-Polymeren (PNVP) wurde RhodaminB, in den thermoresponsiven N Vinyl¬caprolactam-Polymeren (PNVCL) ein Naphthals{\"a}ureimid als Fluorophor verwendet. W{\"a}hrend Rhodamine eine hohe Fluoreszenzintensit{\"a}t, gute Quantenausbeuten und hohen Extinktionskoeffizienten in Wasser zeigen, sind Naphthals{\"a}ure¬imide umgebungssensitive Chromophore, die bei {\"A}nderung ihrer L{\"o}sungsmittelumgebung, wie z.B. beim Kollaps eines thermoresponsiven Polymers in Wasser, ihre Fluoreszenzintensit{\"a}t und Quantenausbeute drastisch {\"a}ndern k{\"o}nnen. Der Vorteil der hier verwendeten Strategie der Monomersynthese liegt darin, dass bei jeder spezifischen Analytdetektion durch eine Erkennungseinheit die Fluoreszenz effizient gel{\"o}scht bzw. bei Verdr{\"a}ngung durch einen st{\"a}rker bindenden Analyten wieder „angeschaltet" wird. Dieses Prinzip wird bereits vielfach in der Biologie in sogenannten „Molecular Beacons" ausgenutzt, wobei ein Fluorophor und ein L{\"o}scher durch spezifische DNA Basenpaarung in einen vorgegebenen Abstand zueinander gezwungen werden und so ein „Schalten" der Fluoreszenz erm{\"o}glichen. Aufgrund der vorgegebenen Struktur der DNA Basensequenzen ist es jedoch nicht direkt auf andere Erkennungsreaktionen {\"u}bertragbar. Daher wurde ein Modellsystem entwickelt, welches die M{\"o}glichkeit bietet Analyt, Erkennungseinheit und Signalgeber variabel, je nach Anforderungen des Systems, auszutauschen. So soll es m{\"o}glich sein, den Sensor a priori f{\"u}r jede Erkennungs¬reaktion zu verwenden. Als Modell Bindungs¬paare wurden ß Cyclodextrin/Adamantan und Con¬cana¬valinA/Mannose ausgew{\"a}hlt. Adamantan bzw. Mannose wurde als Analyt zusammen mit dem Fluorophor in das Polymer eingebunden. ß Cyclo¬dextrin (ß CD) bzw. ConcanavalinA (ConA) wurde als Erkennungsstruktur an einem Fluoreszenzl{\"o}scher immobilisiert. Polymer-basierte Fluoreszenzsensoren sind in der Fachliteratur gut dokumentiert. In der Regel sind Signalgeber und Analyt jedoch statistisch im Polymer verteilt, da sie sich entweder in unterschiedlichen Monomereinheiten befinden oder die Funktionalisierung durch eine polymeranaloge Umsetzung erfolgt. Der gew{\"a}hlte Ansatz Fluorophor und Analyt innerhalb derselben Monomereinheit einzubinden, soll bei jeder Erkennungsreaktion des Analyten zu einer {\"A}nderung der Signalintensit{\"a}t des Fluorophors f{\"u}hren. Eine hohe Signalintensit{\"a}t bei Analytdetektion ist w{\"u}nschenswert, insbesondere f{\"u}r Erkennungsreaktionen, die mit m{\"o}glichst geringem apparativem Aufwand, am besten mit dem bloßen Auge zu verfolgen sein sollen. Des Weiteren ist es m{\"o}glich den Fluorophorgehalt im Polymer genau einzustellen und so Selbstl{\"o}schung zu vermeiden. Die synthetisierten Polymere haben einen Fluorophorgehalt von 0,01 mol\% bis 0,5 mol\%. F{\"u}r die RhodaminB haltigen Polymere zeigte sich, dass ein Fluorophorgehalt unterhalb 0,1 mol\% im Polymer die h{\"o}chsten Ausbeuten, Molmassen und Quantenausbeuten liefert. F{\"u}r die Naphthals{\"a}ureimid haltigen Polymere hingegen wurden auch f{\"u}r einen Fluorophorgehalt von bis zu 1 mol\% hohe Ausbeuten und Molmassen erreicht. Die Naphthals{\"a}ureimid haltigen Polymere haben jedoch in w{\"a}ssriger L{\"o}sungsmittelumgebung nur geringe Quantenausbeuten. Als Fluoreszenzl{\"o}scher wurden Goldnanopartikel synthetisiert, die mit den entsprechenden Erkennungsstrukturen (ß-CD oder ConA) f{\"u}r den verwendeten Analyten funktionalisiert wurden. Goldnanopartikel als L{\"o}scher bieten den Vorteil, dass ihre Dispergierbarkeit in einem L{\"o}semittel durch Funktionalisierung ihrer H{\"u}lle gezielt gesteuert werden kann. Durch die hohe Affinit{\"a}t von Goldnanopartikeln zu Thiolen und Aminen konnten sie mit Hilfe einfacher Syntheseschritte mit Thio ß CD Derivaten bzw. ConA funktionalisiert werden. In der hier vorgelegten Arbeit sollte ein Modellsystem f{\"u}r einen solches fluoreszenz-basiertes Detektionssystem in Wasser entwickelt werden. Nachfolgend werden die zu erf{\"u}llenden strukturellen Voraussetzungen f{\"u}r die Synthese eines solchen Sensors nochmals zusammengefasst: 1. Verwendung eines Fluorophors, der eine hohe Signalintensit{\"a}t zeigt. 2. Analyt bzw. Erkennungseinheit soll sich im Abstand von wenigen Nanometern zum Signalgeber befinden, um bei jeder Detektionsreaktion die Signalintensit{\"a}t des Signalgebers beeinflussen zu k{\"o}nnen. 3. Die Detektionseinheit ben{\"o}tigt eine funktionelle Gruppe zur Immobilisierung. Immobilisierung kann z.B. durch Einbindung in ein Polymer erfolgen. 4. Der Fluorophor soll bei {\"A}nderung seiner lokalen Umgebung, durch Binden eines L{\"o}schers oder {\"A}nderung seiner L{\"o}semittelumgebung seine Fluoreszenzeigenschaften drastisch {\"a}ndern. 5. Die Reaktion sollte schnell und mit m{\"o}glichst geringem apparativem Aufwand, am besten mit bloßem Auge zu verfolgen sein. F{\"u}r das ß-CD/Adamantan Modellsystem wurde ein Fluoreszenz Aus/An Sensor entwickelt, der bei Binden ß CD funktionalisierter Goldnanopartikel an das polymergebundene Adamantan die Fluoreszenz des RhodaminB Fluorophors effizient l{\"o}scht und bei Verdr{\"a}ngung der Goldnanopartikel wieder zur{\"u}ck gewinnt. Dies konnte auch mit bloßem Auge verfolgt werden. F{\"u}r die Naphthals{\"a}ureimid Monomere, die mit NVCL copolymerisiert wurden, wurde abh{\"a}ngig von der lokalen Umgebung des Fluorophors eine unterschiedliche Verst{\"a}rkung der Fluoreszenzintensit{\"a}t bei {\"U}berschreiten des Tr{\"u}bungspunktes des Polymers gefunden. Dabei zeigte sich, dass die Einf{\"u}hrung eines Abstandshalters zwischen Polymerr{\"u}ckgrat und Fluorophor zu einer großen Fluoreszenz¬verst{\"a}rkung f{\"u}hrt, w{\"a}hrend sich ohne Abstandshalter die Fluoreszenzintensit{\"a}t bei {\"U}ber¬schreiten des Tr{\"u}bungspunktes kaum {\"a}ndert.}, language = {de} } @phdthesis{Dambowsky2021, author = {Dambowsky, Ina}, title = {Bioinspirierte Komposite - Strukturbildung durch Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)en}, doi = {10.25932/publishup-52367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 220}, year = {2021}, abstract = {Die herausragenden mechanischen Eigenschaften nat{\"u}rlicher anorganisch-organischer Kompositmaterialien wie Knochen oder Muschelschalen entspringen ihrer hierarchischen Struktur, die von der nano- bis hinauf zur makroskopischen Ebene reicht, und einer kontrollierten Verbindung entlang der Grenzfl{\"a}chen der anorganischen und organischen Komponenten. Ausgehend von diesen Schl{\"u}sselprinzipien des biologischen Materialdesigns wurden in dieser Arbeit zwei Konzepte f{\"u}r die bioinspirierte Strukturbildung von Kompositen untersucht, die auf dem Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)-Blockcopolymeren beruhen sowie deren Potenzial zur Herstellung bioinspirierter selbstorganisierter hierarchischer anorganisch-organischer Verbundstrukturen ohne {\"a}ußere Kr{\"a}fte beleuchtet. Die Konzepte unterschieden sich in den verwendeten anorganischen Partikeln und in der Art der Strukturbildung. {\"U}ber einen modularen Ansatz aus Polymersynthese und polymeranaloger Thiol-En-Funktionalisierung wurde erfolgreich eine Bibliothek von Poly(2-oxazolin)en mit unterschiedlichen Funktionalit{\"a}ten erstellt. Die Blockcopolymere bestehen aus einem kurzen partikelaffinen "Klebeblock", der aus Thiol-En-funktionalisiertem Poly(2-(3-butenyl)-2-oxazolin) besteht, und einem langen wasserl{\"o}slichen, strukturbildenden Block, der aus thermoresponsivem und kristallisierbarem Poly(2-isopropyl-2-oxazolin) besteht und hierarchische Morphologien ausbildet. Verschiedene analytische Untersuchungen wie Turbidimetrie, DLS, DSC, SEM oder XRD machten das thermoresponsive bzw. das Kristallisationsverhalten der Blockcopolymere in Abh{\"a}ngigkeit vom eingef{\"u}hrten Klebeblock zug{\"a}nglich. Es zeigte sich, dass diese Polymere ein komplexes temperatur- und pH-abh{\"a}ngiges Tr{\"u}bungsverhalten aufweisen. Hinsichtlich der Kristallisation {\"a}nderte der Klebeblock nicht die nanoskopische Kristallstruktur; er beeinflusste jedoch die Kristallisationszeit, den Kristallisationsgrad und die hierarchische Morphologie. Dieses Ergebnis wurde auf das unterschiedliche Aggregationsverhalten der Polymere in Wasser zur{\"u}ckgef{\"u}hrt. F{\"u}r die Herstellung von Kompositen nutzte Konzept 1 mikrometergroße Kupferoxalat-Mesokristalle, die eine innere Nanostruktur aufweisen. Die Strukturbildung {\"u}ber den anorganischen Teil wurde durch das Verkleben und Anordnen dieser Partikel erstrebt. Konzept 1 erm{\"o}glichte homogene freistehende stabile Kompositfilme mit einem hohen anorganischen Anteil. Die Partikel-Polymer-Kombination vereinte jedoch ung{\"u}nstige Eigenschaften in sich, d. h. ihre L{\"a}ngenskalen waren zu unterschiedlich, was die Selbstassemblierung der Partikel verhinderte. Aufgrund des geringen Aspektverh{\"a}ltnisses von Kupferoxalat blieb auch die gegenseitige Ausrichtung durch {\"a}ußere Kr{\"a}fte erfolglos. Im Ergebnis eignet sich das Kupferoxalat-Poly(2-oxazolin)-Modellsystem nicht f{\"u}r die Herstellung hierarchischer Kompositstrukturen. Im Gegensatz dazu verwendet Konzept 2 scheibenf{\"o}rmige Laponit®-Nanopartikel und kristallisierbare Blockcopolymere zur Strukturbildung {\"u}ber die organische Komponente durch polymervermittelte Selbstassemblierung. Komplement{\"a}re Analysemethoden (Zeta-Potenzial, DLS, SEM, XRD, DSC, TEM) zeigten sowohl eine kontrollierte Wechselwirkung zwischen den Komponenten in w{\"a}ssriger Umgebung als auch eine kontrollierte Strukturbildung, die in selbstassemblierten Nanokompositen resultiert, deren Struktur sich {\"u}ber mehrere L{\"a}ngenskalen erstreckt. Es wurde gezeigt, dass die negativ geladenen Klebebl{\"o}cke spezifisch und selektiv an den positiv geladenen R{\"a}ndern der Laponit®-Partikel binden und so Polymer-Laponit®-Nanohybridpartikel entstehen, die als Grundbausteine f{\"u}r die Kompositbildung dienen. Die Hybridpartikel sind bei Raumtemperatur elektrosterisch stabilisiert - sterisch durch ihre langen, mit Wasser wechselwirkenden Poly(2-isopropyl-2-oxazolin)-Bl{\"o}cke und elektrostatisch {\"u}ber die negativ geladenen Laponit®-Fl{\"a}chen. Im Ergebnis ließ sich Konzept 2 und damit die Strukturbildung {\"u}ber die organische Komponente erfolgreich umsetzten. Das Laponit®-Poly(2-oxazolin)-Modellsystem er{\"o}ffnete den Weg zu selbstassemblierten geschichteten quasi-hierarchischen Nanokompositstrukturen mit hohem anorganischen Anteil. Abh{\"a}ngig von der frei verf{\"u}gbaren Polymerkonzentration bei der Kompositbildung entstanden zwei unterschiedliche Komposit-Typen. Dar{\"u}ber hinaus entwarf die Arbeit einen Erkl{\"a}rungsansatz f{\"u}r den polymervermittelten Bildungsprozess der Komposit-Strukturen. Insgesamt legt diese Arbeit Struktur-Prozess-Eigenschafts-Beziehungen offen, um selbstassemblierte bioinspirierte Kompositstrukturen zu bilden und liefert neue Einsichten zu einer geeigneten Kombination an Komponenten und Herstellungsbedingungen, die eine kontrollierte selbstassemblierte Strukturbildung mithilfe funktionalisierter Poly(2-oxazolin)-Blockcopolymere erlauben.}, language = {de} } @phdthesis{Buller2013, author = {Buller, Jens}, title = {Entwicklung neuer stimuli-sensitiver Hydrogelfilme als Plattform f{\"u}r die Biosensorik}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66261}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Diese Arbeit befasst sich mit der Synthese und der Charakterisierung von thermoresponsiven Polymeren und ihrer Immobilisierung auf festen Oberfl{\"a}chen als nanoskalige d{\"u}nne Schichten. Dabei wurden thermoresponsive Polymere vom Typ der unteren kritischen Entmischungstemperatur (engl.: lower critical solution temperature, LCST) verwendet. Sie sind bei niedrigeren Temperaturen im L{\"o}sungsmittel gut und nach Erw{\"a}rmen oberhalb einer bestimmten kritischen Temperatur nicht mehr l{\"o}slich; d. h. sie weisen bei einer bestimmten Temperatur einen Phasen{\"u}bergang auf. Als Basismaterial wurden verschiedene thermoresponsive und biokompatible Polymere basierend auf Diethylenglykolmethylethermethacrylat (MEO2MA) und Oligo(ethylenglykol)methylethermethacrylat (OEGMA475, Mn = 475 g/ mol) {\"u}ber frei radikalische Copolymerisation synthetisiert. Der thermoresponsive Phasen{\"u}bergang der Copolymere wurde in w{\"a}ssriger L{\"o}sung und in gequollenen vernetzten d{\"u}nnen Schichten beobachtet. Außerdem wurde untersucht, inwiefern eine selektive Proteinbindung an geeignete funktionalisierte Copolymere die Phasen{\"u}bergangstemperatur beeinflusst. Die thermoresponsiven Copolymere wurden {\"u}ber photovernetzbare Gruppen auf festen Oberfl{\"a}chen immobilisiert. Die n{\"o}tigen lichtempfindlichen Vernetzereinheiten wurden mittels des polymerisierbaren Benzophenonderivates 2 (4 Benzoylphenoxy)ethylmethacrylat (BPEM) in das Copolymer integriert. D{\"u}nne Filme der Copolymere mit ca. 100 nm Schichtdicke wurden {\"u}ber Rotationsbeschichtung auf Siliziumwafer aufgeschleudert und anschließend durch Bestrahlung mit UV Licht vernetzt und auf der Oberfl{\"a}che immobilisiert. Die Filme sind stabiler je gr{\"o}ßer der Vernetzeranteil und je gr{\"o}ßer die Molmasse der Copolymere ist. Bei einem Waschprozess nach der Vernetzung wird beispielsweise aus einem Film mit moderater Molmasse und geringem Vernetzeranteil mehr unvernetztes Copolymer ausgewaschen als bei einem h{\"o}hermolekularen Copolymer mit hohem Vernetzeranteil. Die Quellbarkeit der Polymerschichten wurde mit Ellipsometrie untersucht. Sie ist gr{\"o}ßer je geringer der Vernetzeranteil in den Copolymeren ist. Schichten aus thermoresponsiven OEG Copolymeren zeigen einen Volumenphasen{\"u}bergang vom Typ der LCST. Der thermoresponsive Kollaps der Schichten ist komplett reversibel, die Kollapstemperatur kann {\"u}ber die Zusammensetzung der Copolymere eingestellt werden. F{\"u}r einen Vergleich dieser Eigenschaften mit dem gut charakterisierten und derzeit wohl am h{\"a}ufigsten untersuchten thermoresponsiven Polymer Poly(N-isopropylacrylamid) (PNIPAM) wurden zus{\"a}tzlich photovernetzte Schichten aus PNIPAM hergestellt und ebenfalls ellipsometrisch vermessen. Im Vergleich zu PNIPAM verl{\"a}uft der Phasen{\"u}bergang der Schichten aus den Copolymeren mit Oligo(ethylenglykol)-seitenketten (OEG Copolymere) {\"u}ber einen gr{\"o}ßeren Temperaturbereich. Mit Licht einer Wellenl{\"a}nge > 300 nm wurden die photosensitiven Benzophenongruppen selektiv angeregt. Bei der Verwendung kleinerer Wellenl{\"a}ngen vernetzten die Copolymerschichten auch ohne die Anwesenheit der lichtempfindlichen Benzophenongruppen. Dieser Effekt ließ sich zur kontrollierten Immobilisierung und Vernetzung der OEG Copolymere einsetzen. Als weitere Methode zur Immobilisierung der Copolymere wurde die Anbindung {\"u}ber Amidbindungen untersucht. Dazu wurden OEG Copolymere mit dem carboxylgruppenhaltigen 2 Succinyloxyethylmethacrylat (MES) auf mit 3 Aminopropyldimethylethoxysilan (APDMSi) silanisierte Siliziumwafer rotationsbeschichtet, und mit dem oligomeren α, ω Diamin Jeffamin® ED 900 vernetzt. Die Vernetzungsreaktion erfolgte ohne weitere Zus{\"a}tze durch Erhitzen der Proben. Die Hydrogelschichten waren anschließend stabil und zeigten neben thermoresponsivem auch pH responsives Verhalten. Um zu untersuchen, ob die Phasen{\"u}bergangstemperatur durch eine Proteinbindung beeinflusst werden kann, wurde ein polymerisierbares Biotinderivat 2 Biotinyl-aminoethylmethacrylat (BAEMA) in das thermoresponsive Copolymer eingebaut. Der Einfluss des biotinbindenen Proteins Avidin auf das thermoresponsive Verhalten des Copolymers in L{\"o}sung wurde untersucht. Die spezifische Bindung von Avidin an das biotinylierte Copolymer verschob die {\"U}bergangstemperatur deutlich zu h{\"o}heren Temperaturen. Kontrollversuche zeigten, dass dieses Verhalten auf eine selektive Proteinbindung zur{\"u}ckzuf{\"u}hren ist. Thermoresponsive OEG Copolymere mit photovernetzbaren Gruppen aus BPEM und Biotingruppen aus BAEMA wurden {\"u}ber Rotationsbeschichtung auf Gold- und auf Siliziumoberfl{\"a}chen aufgetragen und durch UV Strahlung vernetzt. Die spezifische Bindung von Avidin an die Copolymerschicht wurde mit Oberfl{\"a}chenplasmonenresonanz und Ellipsometrie untersucht. Die Bindungskapazit{\"a}t der Schichten war umso gr{\"o}ßer, je kleiner der Vernetzeranteil, d. h. je gr{\"o}ßer die Maschenweite des Netzwerkes war. Die Quellbarkeit der Schichten wurde durch die Avidinbindung erh{\"o}ht. Bei hochgequollenen Systemen verursachte eine Mehrfachbindung des tetravalenten Avidins allerdings eine zus{\"a}tzliche Quervernetzung des Polymernetzwerkes. Dieser Effekt wirkt der erh{\"o}hten Quellbarkeit durch die Avidinbindung entgegen und l{\"a}sst die Polymernetzwerke schrumpfen.}, language = {de} }