@phdthesis{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Understanding and predicting global change impacts on migratory birds}, doi = {10.25932/publishup-43925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439256}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 153}, year = {2019}, abstract = {This is a publication-based dissertation comprising three original research stud-ies (one published, one submitted and one ready for submission; status March 2019). The dissertation introduces a generic computer model as a tool to investigate the behaviour and population dynamics of animals in cyclic environments. The model is further employed for analysing how migratory birds respond to various scenarios of altered food supply under global change. Here, ecological and evolutionary time-scales are considered, as well as the biological constraints and trade-offs the individual faces, which ultimately shape response dynamics at the population level. Further, the effect of fine-scale temporal patterns in re-source supply are studied, which is challenging to achieve experimentally. My findings predict population declines, altered behavioural timing and negative carry-over effects arising in migratory birds under global change. They thus stress the need for intensified research on how ecological mechanisms are affected by global change and for effective conservation measures for migratory birds. The open-source modelling software created for this dissertation can now be used for other taxa and related research questions. Overall, this thesis improves our mechanistic understanding of the impacts of global change on migratory birds as one prerequisite to comprehend ongoing global biodiversity loss. The research results are discussed in a broader ecological and scientific context in a concluding synthesis chapter.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} } @phdthesis{Malchow2023, author = {Malchow, Anne-Kathleen}, title = {Developing an integrated platform for predicting niche and range dynamics}, doi = {10.25932/publishup-60273}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-602737}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 169}, year = {2023}, abstract = {Species are adapted to the environment they live in. Today, most environments are subjected to rapid global changes induced by human activity, most prominently land cover and climate changes. Such transformations can cause adjustments or disruptions in various eco-evolutionary processes. The repercussions of this can appear at the population level as shifted ranges and altered abundance patterns. This is where global change effects on species are usually detected first. To understand how eco-evolutionary processes act and interact to generate patterns of range and abundance and how these processes themselves are influenced by environmental conditions, spatially-explicit models provide effective tools. They estimate a species' niche as the set of environmental conditions in which it can persist. However, the currently most commonly used models rely on static correlative associations that are established between a set of spatial predictors and observed species distributions. For this, they assume stationary conditions and are therefore unsuitable in contexts of global change. Better equipped are process-based models that explicitly implement algorithmic representations of eco-evolutionary mechanisms and evaluate their joint dynamics. These models have long been regarded as difficult to parameterise, but an increased data availability and improved methods for data integration lessen this challenge. Hence, the goal of this thesis is to further develop process-based models, integrate them into a complete modelling workflow, and provide the tools and guidance for their successful application. With my thesis, I presented an integrated platform for spatially-explicit eco-evolutionary modelling and provided a workflow for their inverse calibration to observational data. In the first chapter, I introduced RangeShiftR, a software tool that implements an individual-based modelling platform for the statistical programming language R. Its open-source licensing, extensive help pages and available tutorials make it accessible to a wide audience. In the second chapter, I demonstrated a comprehensive workflow for the specification, calibration and validation of RangeShiftR by the example of the red kite in Switzerland. The integration of heterogeneous data sources, such as literature and monitoring data, allowed to successfully calibrate the model. It was then used to make validated, spatio-temporal predictions of future red kite abundance. The presented workflow can be adopted to any study species if data is available. In the third chapter, I extended RangeShiftR to directly link demographic processes to climatic predictors. This allowed me to explore the climate-change responses of eight Swiss breeding birds in more detail. Specifically, the model could identify the most influential climatic predictors, delineate areas of projected demographic suitability, and attribute current population trends to contemporary climate change. My work shows that the application of complex, process-based models in conservation-relevant contexts is feasible, utilising available tools and data. Such models can be successfully calibrated and outperform other currently used modelling approaches in terms of predictive accuracy. Their projections can be used to predict future abundances or to assess alternative conservation scenarios. They further improve our mechanistic understanding of niche and range dynamics under climate change. However, only fully mechanistic models, that include all relevant processes, allow to precisely disentangle the effects of single processes on observed abundances. In this respect, the RangeShiftR model still has potential for further extensions that implement missing influential processes, such as species interactions. Dynamic, process-based models are needed to adequately model a dynamic reality. My work contributes towards the advancement, integration and dissemination of such models. This will facilitate numeric, model-based approaches for species assessments, generate ecological insights and strengthen the reliability of predictions on large spatial scales under changing conditions.}, language = {en} }