@phdthesis{Wotschack2009, author = {Wotschack, Christiane}, title = {Eye movements in reading strategies : how reading strategies modulate effects of distributed processing and oculomotor control}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-021-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-36846}, school = {Universit{\"a}t Potsdam}, pages = {213}, year = {2009}, abstract = {Throughout its empirical research history eye movement research has always been aware of the differences in reading behavior induced by individual differences and task demands. This work introduces a novel comprehensive concept of reading strategy, comprising individual differences in reading style and reading skill as well as reader goals. In a series of sentence reading experiments recording eye movements, the influence of reading strategies on reader- and word-level effects assuming distributed processing has been investigated. Results provide evidence for strategic, top-down influences on eye movement control that extend our understanding of eye guidance in reading.}, language = {en} } @article{TrukenbrodEngbert2012, author = {Trukenbrod, Hans Arne and Engbert, Ralf}, title = {Eye movements in a sequential scanning task - evidence for distributed processing}, series = {Journal of vision}, volume = {12}, journal = {Journal of vision}, number = {1}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/12.1.5}, pages = {12}, year = {2012}, abstract = {Current models of eye movement control are derived from theories assuming serial processing of single items or from theories based on parallel processing of multiple items at a time. This issue has persisted because most investigated paradigms generated data compatible with both serial and parallel models. Here, we study eye movements in a sequential scanning task, where stimulus n indicates the position of the next stimulus n + 1. We investigate whether eye movements are controlled by sequential attention shifts when the task requires serial order of processing. Our measures of distributed processing in the form of parafoveal-on-foveal effects, long-range modulations of target selection, and skipping saccades provide evidence against models strictly based on serial attention shifts. We conclude that our results lend support to parallel processing as a strategy for eye movement control.}, language = {en} }