@article{RamirezCampilloPerezCastillaThapaetal.2022, author = {Ramirez-Campillo, Rodrigo and P{\´e}rez-Castilla, Alejandro and Thapa, Rohit Kumar and Afonso, Jos{\´e} and Clemente, Filipe Manuel Batista and Colado, Juan C. and Eduardo, Sa{\´e}z de Villarreal and Chaabene, Helmi}, title = {Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes}, series = {Sports Medicine - Open}, volume = {8}, journal = {Sports Medicine - Open}, publisher = {Springer}, address = {Berlin}, issn = {2198-9761}, doi = {10.1186/s40798-022-00502-2}, pages = {1 -- 27}, year = {2022}, abstract = {Background A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. Aim To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. Methods The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges' g) with 95\% confidence intervals (95\% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. Results A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES =  - 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. Conclusions PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1).}, language = {en} } @misc{RamirezCampilloPerezCastillaThapaetal.2022, author = {Ramirez-Campillo, Rodrigo and P{\´e}rez-Castilla, Alejandro and Thapa, Rohit Kumar and Afonso, Jos{\´e} and Clemente, Filipe Manuel Batista and Colado, Juan C. and Eduardo, Sa{\´e}z de Villarreal and Chaabene, Helmi}, title = {Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {804}, issn = {1866-8364}, doi = {10.25932/publishup-57144}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571441}, pages = {27}, year = {2022}, abstract = {Background A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. Aim To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. Methods The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges' g) with 95\% confidence intervals (95\% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. Results A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES =  - 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. Conclusions PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1).}, language = {en} } @article{LacroixKressigMuehlbaueretal.2016, author = {Lacroix, Andre and Kressig, Reto W. and M{\"u}hlbauer, Thomas and Gschwind, Yves J. and Pfenninger, Barbara and Bruegger, Othmar and Granacher, Urs}, title = {Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial}, series = {Gerontology}, volume = {62}, journal = {Gerontology}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000442087}, pages = {275 -- 288}, year = {2016}, abstract = {Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92\% for SUP and 97\% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90\%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{GschwindKressigLacroixetal.2013, author = {Gschwind, Yves J. and Kressig, Reto W. and Lacroix, Andre and M{\"u}hlbauer, Thomas and Pfenninger, Barbara and Granacher, Urs}, title = {A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial}, series = {BMC geriatrics}, volume = {13}, journal = {BMC geriatrics}, number = {4}, publisher = {BioMed Central}, address = {London}, issn = {1471-2318}, doi = {10.1186/1471-2318-13-105}, pages = {13}, year = {2013}, abstract = {Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.}, language = {en} } @article{GranacherSchellbachKleinetal.2014, author = {Granacher, Urs and Schellbach, J{\"o}rg and Klein, Katja and Prieske, Olaf and Baeyens, Jean-Pierre and M{\"u}hlbauer, Thomas}, title = {Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents}, series = {BMC sports science, medicine \& rehabilitation}, volume = {6}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/2052-1847-6-40}, pages = {11}, year = {2014}, abstract = {Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22\%, f = 0.47-0.76), the jumping sideways test (4-5\%, f = 1.07), and the Y balance test (2-3\%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3\%, f = 0.39) and the stand-and-reach test (0-2\%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2\%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS.}, language = {en} } @misc{GranacherSchellbachKleinetal.2016, author = {Granacher, Urs and Schellbach, J{\"o}rg and Klein, Katja and Prieske, Olaf and Baeyens, Jean-Pierre and M{\"u}hlbauer, Thomas}, title = {Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93490}, pages = {11}, year = {2016}, abstract = {Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22\%, f = 0.47-0.76), the jumping sideways test (4-5\%, f = 1.07), and the Y balance test (2-3\%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3\%, f = 0.39) and the stand-and-reach test (0-2\%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2\%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS.}, language = {en} } @article{GranacherMuehlbauerGschwindetal.2014, author = {Granacher, Urs and M{\"u}hlbauer, Thomas and Gschwind, Y. J. and Pfenninger, B. and Kressig, R. W.}, title = {Assessment and training of strength and balance for fall prevention in the elderly. Recommendations of an interdisciplinary expert panel}, series = {Zeitschrift f{\"u}r Gerontologie und Geriatrie}, volume = {47}, journal = {Zeitschrift f{\"u}r Gerontologie und Geriatrie}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0948-6704}, doi = {10.1007/s00391-013-0509-5}, pages = {513 -- 525}, year = {2014}, abstract = {The proportion of elderly people in societies of western industrialized countries is continuously rising. Biologic aging induces deficits in balance and muscle strength/power in old age, which is responsible for an increased prevalence of falls. Therefore, nationwide and easy-to-administer fall prevention programs have to be developed in order to contribute to the autonomy and quality of life in old age and to help reduce the financial burden on the public health care system due to the treatment of fall-related injuries. This narrative (qualitative) literature review deals with a) the reasons for an increased prevalence of falls in old age, b) important clinical tests for fall-risk assessment, and c) evidence-based intervention/training programs for fall prevention in old age. The findings of this literature review are based on a cost-free practice guide that is available to the public (via the internet) and that was created by an expert panel (i.e., geriatricians, exercise scientists, physiotherapists, geriatric therapists). The present review provides the scientific foundation of the practice guide.}, language = {de} }