@misc{HocherReichetzederAlter2012, author = {Hocher, Berthold and Reichetzeder, Christoph and Alter, Markus L.}, title = {Renal and cardiac effects of DPP-4 inhibitors - from preclinical development to clinical research}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {36}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000339028}, pages = {65 -- 84}, year = {2012}, abstract = {Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined Phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal Phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials - beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure.}, language = {en} } @phdthesis{Frey2009, author = {Frey, Simone K.}, title = {Investigations on extra- and intracellular retinol-binding proteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31428}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The fat-soluble vitamin A, which is chemically referred to retinol (ROH), is known to be essential for the process of vision, the immune system but also for cell differentiation and proliferation. Recently, ROH itself has been reported to be involved in adipogenesis and a ROH transport protein, the retinol-binding protein 4 (RBP4), in insulin resistance and type 2 diabetes. However, there is still considerable scientific debate about this relation. With the increasing amount of studies investigating the relation of ROH in obesity and type 2 diabetes, basic research is an essential prerequisite for interpreting these results. This thesis enhances the knowledge on this relation by reviewing ROH metabolism on extra- and intracellular level. Aim 1: In the blood stream ROH is transported in a complex with RBP4 and a second protein, transthyretin (TTR), to the target cells. The levels of RBP4 and TTR are influenced by several factors but mainly by liver and kidney function. The reason for that is that liver and the kidneys are the sites of RBP4 synthesis and catabolism, respectively. Interestingly, obesity and type 2 diabetes involve disorders of the liver and the kidneys. Therefore the aim was to investigate factors that influence RBP4 and TTR levels in relation to obesity and type 2 diabetes (Part 1). Aim 2: Once arrived in the target cell ROH is bound to cellular retinol-binding protein type I (CRBP-I) and metabolised: ROH can either be stored as retinylesters or it can be oxidised to retinoic acid (RA). By acting as a transcription factor in the nucleus RA may influence processes such as adipogenesis. Therefore vitamin A has been postulated to be involved in obesity and type 2 diabetes. CRBP-I is known to mediate the storage of ROH in the liver, but the extra-hepatic metabolism and the functions of CRBP-I are not well known. This has been investigated in Part 2 of this work. Material \& Methods: RBP4 and TTR levels were investigated by ELISA in serum samples of human subjects with overweight, type 2 diabetes, kidney or liver dysfunction. Molecular alterations of the RBP4 and TTR protein structure were analysed by MALDI-TOF mass spectrometry. The functions of intracellular CRBP-I were investigated in CRBP-I knock-out mice in liver and extra-hepatic tissues by measuring ROH levels as well as the levels of its storage form, the retinylesters, using reverse phase HPLC. The postprandial uptake of ROH into tissues was analysed using labelled ROH. The mRNA levels of enzymes that metabolize ROH were examined by real-time polymerase chain reaction (RCR). Results: The previous published results showing increased RBP4 levels in type 2 diabetic patients could not be confirmed in this work. However, it could be shown that during kidney dysfunction RBP4 levels are increased and that RBP4 and TTR levels are decreased during liver dysfunction. The important new finding of this work is that increased RBP4 levels in type 2 diabetic mice were increased when kidney function was decreased. Thus an increase in RBP4 levels in type 2 diabetes may be the effect of a reduced kidney function which is common in type 2 diabetes. Interestingly, during severe kidney dysfunction the molecular structure of RBP4 and TTR was altered in a specific manner which was not the case during liver diseases and type 2 diabetes. This underlines the important function of the kidneys in RBP4 metabolism. CRBP-I has been confirmed to be responsible for the ROH storage in the liver since CRBP-I knock-out mice had decreased ROH and retinylesters (the storage form of ROH) levels in the liver. Interestingly, in the adipose tissue (the second largest ROH storage tissue in the body) ROH and retinylesters levels were higher in the CRBP-I knock-out compared to the wild-type mice. It could be shown in this work that a different ROH binding protein, cellular retinol-binding protein type III, is upregulated in CRBP-I knock-out mice. Moreover enzymes were identified which mediate very efficiently ROH esterification in the adipose tissue of the knock-out mice. In the pancreas there was a higher postprandial ROH uptake in the CRBP-I knock-out compard to wild-type mice. Even under a vitamin A deficient diet the knock-out animals had ROH and retinylesters levels which were comparable to wild-type animals. These results underline the important role of ROH for insulin secretion in the pancreas. Summing up, there is evidence that RBP4 levels are more determined by kidney function than by type 2 diabetes and that specific molecular modifications occur during kidney dysfunction. The results in adipose tissue and pancreas of CRBP-I knock-out mice support the hypothesis that ROH plays an important role in glucose and lipid metabolism.}, language = {en} } @phdthesis{AgaBarfknecht2021, author = {Aga-Barfknecht, Heja}, title = {Investigation of the phenotype and genetic variant(s) of the diabetes locus Nidd/DBA}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {Diabetes is a major public health problem with increasing global prevalence. Type 2 diabetes (T2D), which accounts for 90\% of all diagnosed cases, is a complex polygenic disease also modulated by epigenetics and lifestyle factors. For the identification of T2D-associated genes, linkage analyses combined with mouse breeding strategies and bioinformatic tools were useful in the past. In a previous study in which a backcross population of the lean and diabetes-prone dilute brown non-agouti (DBA) mouse and the obese and diabetes-susceptible New Zealand obese (NZO) mouse was characterized, a major diabetes quantitative trait locus (QTL) was identified on chromosome 4. The locus was designated non-insulin dependent diabetes from DBA (Nidd/DBA). The aim of this thesis was (i) to perform a detailed phenotypic characterization of the Nidd/DBA mice, (ii) to further narrow the critical region and (iii) to identify the responsible genetic variant(s) of the Nidd/DBA locus. The phenotypic characterization of recombinant congenic mice carrying a 13.6 Mbp Nidd/DBA fragment with 284 genes presented a gradually worsening metabolic phenotype. Nidd/DBA allele carriers exhibited severe hyperglycemia (~19.9 mM) and impaired glucose clearance at 12 weeks of age. Ex vivo perifusion experiments with islets of 13-week-old congenic mice revealed a tendency towards reduced insulin secretion in homozygous DBA mice. In addition, 16-week-old mice showed a severe loss of β-cells and reduced pancreatic insulin content. Pathway analysis of transcriptome data from islets of congenic mice pointed towards a downregulation of cell survival genes. Morphological analysis of pancreatic sections displayed a reduced number of bi-hormonal cells co-expressing glucagon and insulin in homozygous DBA mice, which could indicate a reduced plasticity of endocrine cells in response to hyperglycemic stress. Further generation and phenotyping of recombinant congenic mice enabled the isolation of a 3.3 Mbp fragment that was still able to induce hyperglycemia and contained 61 genes. Bioinformatic analyses including haplotype mapping, sequence and transcriptome analysis were integrated in order to further reduce the number of candidate genes and to identify the presumable causative gene variant. Four putative candidate genes (Ttc39a, Kti12, Osbpl9, Calr4) were defined, which were either differentially expressed or carried a sequence variant. In addition, in silico ChIP-Seq analyses of the 3.3 Mbp region indicated a high number of SNPs located in active regions of binding sites of β-cell transcription factors. This points towards potentially altered cis-regulatory elements that could be responsible for the phenotype conferred by the Nidd/DBA locus. In summary, the Nidd/DBA locus mediates impaired glucose homeostasis and reduced insulin secretion capacity which finally leads to β-cell death. The downregulation of cell survival genes and reduced plasticity of endocrine cells could further contribute to the β-cell loss. The critical region was narrowed down to a 3.3 Mbp fragment containing 61 genes, of which four might be involved in the development of the diabetogenic Nidd/DBA phenotype.}, language = {en} }