@phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} } @phdthesis{Ballato2009, author = {Ballato, Paolo}, title = {Tectonic and climatic forcing in orogenic processes : the foreland basin point of view, Alborz mountains, N Iran}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41068}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Systeme von Vorlandbecken repr{\"a}sentieren bedeutende geologische Archive und dienen dem Verst{\"a}ndnis von R{\"u}ckkopplungen zwischen oberfl{\"a}chennahen und tektonischen Prozessen. Außerdem dokumentieren sie die Entwicklung unmittelbar angrenzender Bergketten. Die sediment{\"a}ren Abfolgen in Vorlandbecken reflektieren das Gleichgewicht zwischen tektonischer Subsidenz, der Bildung langzeitlichen Akkommodationsraumes und des Sedimenteintrages, welcher wiederum die Wirksamkeit von Erosions- und Massenneuverteilungsprozessen wiederspiegelt. Um die Effekte von Klima und Tektonik in einem solchen System zu erforschen, untersuchte ich die Oligo-Mioz{\"a}nen Sedimente in den Vorlandbecken der s{\"u}dlichen Elburs Bergkette, einem intrakontinentalen Gebirge in Nord-Iran, das im Zuge der Arabisch-Eurasischen Kontinent-Kollision herausgehoben wurde. In dieser Studie der Vorlandbeckensedimente wurden Datierungstechniken angewandt (40Ar/39Ar, (U-Th)/He Thermochronologie und Magnetostratigraphie), die Sedimente und deren Herkunft analysiert und die Tonmineralogie, sowie Sauerstoff- und Kohlenstoffisotope untersucht. Die Ergebnisse zeigen, dass auf einer Zeitskala von 105 bis 106 Jahren eine systematische Korrelation zwischen „coarsening upward" Zyklen und den sediment{\"a}ren Akkumulationsraten besteht. W{\"a}hrend sukzessiver {\"U}berschiebungsphasen werden die durch Hebung der Bergkette bereitgestellten groben Kornfraktionen in proximale Bereiche des Beckens geliefert und feink{\"o}rnige Fazies in distalen Beckenregionen abgelagert. Variationen in der Sedimentherkunft in Phasen gr{\"o}ßerer tektonischer Aktivit{\"a}t zeugen von erosionaler Abdeckung und/oder der Umorganisation nat{\"u}rlicher Entw{\"a}sserungsstrukturen. Außerdem zeigen die Untersuchungen an stabilen Isotopen, dass die verst{\"a}rkte tektonische Aktivit{\"a}t das Anwachsen der Topographie f{\"o}rderte und damit die Wirksamkeit einer topographischen Barriere erh{\"o}hte. Wenn aufgrund nachlassender Beckenabsenkung die grobe Kornfraktion nicht vollst{\"a}ndig im Nahbereich des Beckens aufgenommen werden kann breitet sie sich in ferne Beckenregionen aus. Im Elburs wird die verringerte Subsidenz durch eine interne Hebung des Vorlandes hervorgerufen und ist mit einer lateralen Stapelung von Flussbetten assoziiert. Dokumentiert wird dies anhand konsequenten Schichtwachstums, tektonischer Schr{\"a}gstellung und sediment{\"a}rer Umlagerung. Gleichzeitig nehmen die Sedimentationsraten zu. Die Sauerstoff-Isotope der Pal{\"a}ob{\"o}den zeigen, dass dieser Anstieg mit einer Phase feuchteren Klimas einhergeht, wodurch Oberfl{\"a}chenprozesse effizienter werden und Heraushebungssraten steigen, was eine positive R{\"u}ckkopplung erzeugt. Des Weiteren zeigen die isotopischen und sediment{\"a}ren Daten, dass seit 10-9 Millionen Jahren (Ma) das Klima durch saisonalen Anstieg der Niederschl{\"a}ge zunehmend feuchter wurde. Da bedeutende klimatische Ver{\"a}nderungen zu dieser Zeit auch im Mittelmeerraum und Asien beobachtet wurden, ist anzunehmen, dass die klimatische Ver{\"a}nderung, die im Elburs Gebirge beobachtet wird, h{\"o}chstwahrscheinlich {\"A}nderungen der atmosph{\"a}rischen Zirkulationen der n{\"o}rdlichen Hemisph{\"a}re reflektiert. Aus den Ergebnissen dieser Studie lassen sich zus{\"a}tzliche Implikationen f{\"u}r die Entwicklung des Elburs Gebirges und die Arabisch-Eurasische kontinentale Kollisionszone ableiten. Die orogen-weite Hauptdeformation propagierte nicht gleichm{\"a}ßig nach S{\"u}den, sondern seit dem Oligoz{\"a}n schrittweise vorw{\"a}rts und r{\"u}ckw{\"a}rts. Insbesondere von ~17,5 bis 6,2 Ma wurde das Gebirge durch eine Kombination aus frontaler Akkretion und interner Keildeformation in Schritten von 0,7 bis 2 Millionen Jahren herausgehoben. Dar{\"u}ber hinaus deuten die Sedimentherkunftsdaten darauf hin, dass sich noch vor 10-9 Ma die Haupteinengungsrichtung von NW-SE nach NNE-SSW ver{\"a}nderte. Regional erlaubt die Geschichte der untersuchten Becken und angrenzenden Gebirgsz{\"u}ge R{\"u}ckschl{\"u}sse auf ein neues geodynamisches Model zur Entwicklung der Arabisch-Eurasischen kontinentalen Kollisionszone. Zahlreiche Sedimentbecken des Elburs Gebirges und anderer Lokalit{\"a}ten der Arabisch-Eurasischen Deformationszone belegen einen Wechsel von einem tensionalen zu einem kompressionalen tektonischen Regime vor ~36 Ma . Dieser Wechsel k{\"o}nnte den Beginn der Subduktion von gedehnter arabischer kontinentaler Lithosph{\"a}re unter Zentral-Iran bedeuten, was zu einer moderaten Plattenkopplung und Deformation von Unter- sowie Oberplatte gef{\"u}hrt hat. Der Anstieg der Deformationsraten im s{\"u}dlichen Elburs Gebirge seit ~17,5 Ma l{\"a}sst vermuten, dass die Oberplatte, wahrscheinlich aufgrund steigender Plattenkopplung, seit dem fr{\"u}hen Mioz{\"a}n signifikant deformiert wurde. Diese Ver{\"a}nderung k{\"o}nnte der Subduktion m{\"a}chtigerer arabischer kontinentaler Lithosph{\"a}re zugeschrieben werden und den Anfang echter kontinentaler Kollision bedeuten. Dieses Model erkl{\"a}rt daher die Zeitverz{\"o}gerung zwischen der Initiation der Arabisch-Eurasischen kontinentalen Kollision (Eoz{\"a}n-Oligoz{\"a}n) and dem Beginn ausgedehnter Deformation in der Kollisionszone (Mioz{\"a}n).}, language = {en} }