@phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} } @article{VacogneSchopfererSchlaad2016, author = {Vacogne, Charlotte D. and Schopferer, Michael and Schlaad, Helmut}, title = {Physical Gelation of alpha-Helical Copolypeptides}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {17}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.6b00427}, pages = {2384 -- 2391}, year = {2016}, abstract = {Owing to its rod-like alpha-helical secondary structure, the synthetic polypeptide poly(gamma-benzyl-L-glutamate) (PBLG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBLG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBLG and a series of statistical poly(gamma-benzyl-L-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS). The secondary structure of PBLG and the copolypeptides presented dissimilarities that increased with increasing AG molar fraction, especially when racemic AG units were incorporated. The physical gelation behavior of these copolypeptides was analyzed by temperature-sweep H-1 NMR and rheological measurements. The study revealed that both copolypeptide composition and chain length affected secondary structure, gelation temperature, and gel stiffness.}, language = {en} }