@article{BommerScherbaumBungumetal.2005, author = {Bommer, Julian J. and Scherbaum, Frank and Bungum, Hilmar and Cotton, Fabrice and Sabetta, F. and Abrahamson, Norman A.}, title = {On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis}, issn = {0037-1106}, year = {2005}, abstract = {Logic trees are widely used in probabilistic seismic hazard analysis as a tool to capture the epistemic uncertainty associated with the seismogenic sources and the ground-motion prediction models used in estimating the hazard. Combining two or more ground-motion relations within a logic tree will generally require several conversions to be made, because there are several definitions available for both the predicted ground-motion parameters and the explanatory parameters within the predictive ground-motion relations. Procedures for making conversions for each of these factors are presented, using a suite of predictive equations in current use for illustration. The sensitivity of the resulting ground-motion models to these conversions is shown to be pronounced for some of the parameters, especially the measure of source-to-site distance, highlighting the need to take into account any incompatibilities among the selected equations. Procedures are also presented for assigning weights to the branches in the ground-motion section of the logic tree in a transparent fashion, considering both intrinsic merits of the individual equations and their degree of applicability to the particular application}, language = {en} } @article{DialloKuleshHolschneideretal.2005, author = {Diallo, Mamadou Sanou and Kulesh, Michail and Holschneider, Matthias and Scherbaum, Frank}, title = {Instantaneous polarization attributes in the time-frequency domain and wavefield separation}, issn = {0016-8025}, year = {2005}, abstract = {We introduce a method of wavefield separation from multicomponent data sets based on the use of the continuous wavelet transform. Our method is a further generalization of the approach proposed by Morozov and Smithson, in that by using the continuous wavelet transform, we can achieve a better separation of wave types by designing the filter in the time-frequency domain. Furthermore, using the instantaneous polarization attributes defined in the wavelet domain, we show how to construct filters tailored to separate different wave types (elliptically or linearly polarized), followed by an inverse wavelet transform to obtain the desired wave type in the time domain. Using synthetic and experimental data, we show how the present method can be used for wavefield separation}, language = {en} } @article{HolschneiderDialloKuleshetal.2005, author = {Holschneider, Matthias and Diallo, Mamadou Sanou and Kulesh, Michail and Ohrnberger, Matthias and Luck, E. and Scherbaum, Frank}, title = {Characterization of dispersive surface waves using continuous wavelet transforms}, issn = {0956-540X}, year = {2005}, abstract = {In this paper, we propose a method of surface waves characterization based on the deformation of the wavelet transform of the analysed signal. An estimate of the phase velocity (the group velocity) and the attenuation coefficient is carried out using a model-based approach to determine the propagation operator in the wavelet domain, which depends nonlinearly on a set of unknown parameters. These parameters explicitly define the phase velocity, the group velocity and the attenuation. Under the assumption that the difference between waveforms observed at a couple of stations is solely due to the dispersion characteristics and the intrinsic attenuation of the medium, we then seek to find the set of unknown parameters of this model. Finding the model parameters turns out to be that of an optimization problem, which is solved through the minimization of an appropriately defined cost function. We show that, unlike time-frequency methods that exploit only the square modulus of the transform, we can achieve a complete characterization of surface waves in a dispersive and attenuating medium. Using both synthetic examples and experimental data, we also show that it is in principle possible to separate different modes in both the time domain and the frequency domain}, language = {en} } @article{KuleshHolschneiderDialloetal.2005, author = {Kulesh, Michail and Holschneider, Matthias and Diallo, Mamadou Sanou and Xie, Q. and Scherbaum, Frank}, title = {Modeling of wave dispersion using continuous wavelet transforms}, issn = {0033-4553}, year = {2005}, abstract = {In the estimate of dispersion with the help of wavelet analysis considerable emphasis has been put on the extraction of the group velocity using the modulus of the wavelet transform. In this paper we give an asymptotic expression of the full propagator in wavelet space that comprises the phase velocity as well. This operator establishes a relationship between the observed signals at two different stations during wave propagation in a dispersive and attenuating medium. Numerical and experimental examples are presented to show that the method accurately models seismic wave dispersion and attenuation}, language = {en} } @article{MussonToroCoppersmithetal.2005, author = {Musson, R. M. W. and Toro, G. R. and Coppersmith, Kevin J. and Bommer, Julian J. and Deichmann, N. and Bungum, Hilmar and Cotton, Fabrice and Scherbaum, Frank and Slejko, Dario and Abrahamson, Norman A.}, title = {Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel}, year = {2005}, abstract = {The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{ScherbaumBommerBungumetal.2005, author = {Scherbaum, Frank and Bommer, Julian J. and Bungum, Hilmar and Cotton, Fabrice and Abrahamson, Norman A.}, title = {Composite ground-motion models and logic trees: Methodology, sensitivities, and uncertainties}, issn = {0037-1106}, year = {2005}, abstract = {Logic trees have become a popular tool in seismic hazard studies. Commonly, the models corresponding to the end branches of the complete logic tree in a probabalistic seismic hazard analysis (PSHA) are treated separately until the final calculation of the set of hazard curves. This comes at the price that information regarding sensitivities and uncertainties in the ground-motion sections of the logic tree are only obtainable after disaggregation. Furthermore, from this end-branch model perspective even the designers of the logic tree cannot directly tell what ground-motion scenarios most likely would result from their logic trees for a given earthquake at a particular distance, nor how uncertain these scenarios might be or how they would be affected by the choices of the hazard analyst. On the other hand, all this information is already implicitly present in the logic tree. Therefore, with the ground-motion perspective that we propose in the present article, we treat the ground-motion sections of a complete logic tree for seismic hazard as a single composite model representing the complete state-of-knowledge-and-belief of a particular analyst on ground motion in a particular target region. We implement this view by resampling the ground-motion models represented in the ground-motion sections of the logic tree by Monte Carlo simulation (separately for the median values and the sigma values) and then recombining the sets of simulated values in proportion to their logic-tree branch weights. The quantiles of this resampled composite model provide the hazard analyst and the decision maker with a simple, clear, and quantitative representation of the overall physical meaning of the ground-motion section of a logic tree and the accompanying epistemic uncertainty. Quantiles of the composite model also provide an easy way to analyze the sensitivities and uncertainties related to a given logic-tree model. We illustrate this for a composite ground- motion model for central Europe. Further potential fields of applications are seen wherever individual best estimates of ground motion have to be derived from a set of candidate models, for example, for hazard rnaps, sensitivity studies, or for modeling scenario earthquakes}, language = {en} } @article{SchmedesHainzlReameretal.2005, author = {Schmedes, J. and Hainzl, Sebastian and Reamer, S. K. and Scherbaum, Frank and Hinzen, K. G.}, title = {Moment release in the Lower Rhine Embayment, Germany : seismological perspective of the deformation process}, issn = {0956-540X}, year = {2005}, abstract = {An important task of seismic hazard assessment consists of estimating the rate of seismic moment release which is correlated to the rate of tectonic deformation and the seismic coupling. However, the estimations of deformation depend on the type of information utilized (e.g. geodetic, geological, seismic) and include large uncertainties. We therefore estimate the deformation rate in the Lower Rhine Embayment (LRE), Germany, using an integrated approach where the uncertainties have been systematically incorporated. On the basis of a new homogeneous earthquake catalogue we initially determine the frequency-magnitude distribution by statistical methods. In particular, we focus on an adequate estimation of the upper bound of the Gutenberg-Richter relation and demonstrate the importance of additional palaeoseis- mological information. The integration of seismological and geological information yields a probability distribution of the upper bound magnitude. Using this distribution together with the distribution of Gutenberg-Richter a and b values, we perform Monte Carlo simulations to derive the seismic moment release as a function of the observation time. The seismic moment release estimated from synthetic earthquake catalogues with short catalogue length is found to systematically underestimate the long-term moment rate which can be analytically determined. The moment release recorded in the LRE over the last 250 yr is found to be in good agreement with the probability distribution resulting from the Monte Carlo simulations. Furthermore, the long-term distribution is within its uncertainties consistent with the moment rate derived by geological measurements, indicating an almost complete seismic coupling in this region. By means of Kostrov's formula, we additionally calculate the full deformation rate tensor using the distribution of known focal mechanisms in LRE. Finally, we use the same approach to calculate the seismic moment and the deformation rate for two subsets of the catalogue corresponding to the east- and west-dipping faults, respectively}, language = {en} }