@phdthesis{AbdelwahabHusseinAbdelwahabElsayed2019, author = {Abdelwahab Hussein Abdelwahab Elsayed, Ahmed}, title = {Probabilistic, deep, and metric learning for biometric identification from eye movements}, doi = {10.25932/publishup-46798}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467980}, school = {Universit{\"a}t Potsdam}, pages = {vi, 65}, year = {2019}, abstract = {A central insight from psychological studies on human eye movements is that eye movement patterns are highly individually characteristic. They can, therefore, be used as a biometric feature, that is, subjects can be identified based on their eye movements. This thesis introduces new machine learning methods to identify subjects based on their eye movements while viewing arbitrary content. The thesis focuses on probabilistic modeling of the problem, which has yielded the best results in the most recent literature. The thesis studies the problem in three phases by proposing a purely probabilistic, probabilistic deep learning, and probabilistic deep metric learning approach. In the first phase, the thesis studies models that rely on psychological concepts about eye movements. Recent literature illustrates that individual-specific distributions of gaze patterns can be used to accurately identify individuals. In these studies, models were based on a simple parametric family of distributions. Such simple parametric models can be robustly estimated from sparse data, but have limited flexibility to capture the differences between individuals. Therefore, this thesis proposes a semiparametric model of gaze patterns that is flexible yet robust for individual identification. These patterns can be understood as domain knowledge derived from psychological literature. Fixations and saccades are examples of simple gaze patterns. The proposed semiparametric densities are drawn under a Gaussian process prior centered at a simple parametric distribution. Thus, the model will stay close to the parametric class of densities if little data is available, but it can also deviate from this class if enough data is available, increasing the flexibility of the model. The proposed method is evaluated on a large-scale dataset, showing significant improvements over the state-of-the-art. Later, the thesis replaces the model based on gaze patterns derived from psychological concepts with a deep neural network that can learn more informative and complex patterns from raw eye movement data. As previous work has shown that the distribution of these patterns across a sequence is informative, a novel statistical aggregation layer called the quantile layer is introduced. It explicitly fits the distribution of deep patterns learned directly from the raw eye movement data. The proposed deep learning approach is end-to-end learnable, such that the deep model learns to extract informative, short local patterns while the quantile layer learns to approximate the distributions of these patterns. Quantile layers are a generic approach that can converge to standard pooling layers or have a more detailed description of the features being pooled, depending on the problem. The proposed model is evaluated in a large-scale study using the eye movements of subjects viewing arbitrary visual input. The model improves upon the standard pooling layers and other statistical aggregation layers proposed in the literature. It also improves upon the state-of-the-art eye movement biometrics by a wide margin. Finally, for the model to identify any subject — not just the set of subjects it is trained on — a metric learning approach is developed. Metric learning learns a distance function over instances. The metric learning model maps the instances into a metric space, where sequences of the same individual are close, and sequences of different individuals are further apart. This thesis introduces a deep metric learning approach with distributional embeddings. The approach represents sequences as a set of continuous distributions in a metric space; to achieve this, a new loss function based on Wasserstein distances is introduced. The proposed method is evaluated on multiple domains besides eye movement biometrics. This approach outperforms the state of the art in deep metric learning in several domains while also outperforming the state of the art in eye movement biometrics.}, language = {en} } @misc{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1062}, issn = {1866-8372}, doi = {10.25932/publishup-47052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470527}, pages = {18}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @misc{AguadoCabalarFandinoetal.2019, author = {Aguado, Felicidad and Cabalar, Pedro and Fandi{\~n}o, Jorge and Pearce, David and Perez, Gilberto and Vidal, Concepcion}, title = {Revisiting explicit negation in answer set programming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1104}, issn = {1866-8372}, doi = {10.25932/publishup-46969}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469697}, pages = {908 -- 924}, year = {2019}, abstract = {A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson's strong negation.}, language = {en} } @misc{AlLabanRegerLucke2022, author = {Al Laban, Firas and Reger, Martin and Lucke, Ulrike}, title = {Closing the Policy Gap in the Academic Bridge}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1310}, issn = {1866-8372}, doi = {10.25932/publishup-58357}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583572}, pages = {22}, year = {2022}, abstract = {The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies.}, language = {en} } @phdthesis{AlAreqi2017, author = {Al-Areqi, Samih Taha Mohammed}, title = {Semantics-based automatic geospatial service composition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402616}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 163}, year = {2017}, abstract = {Although it has become common practice to build applications based on the reuse of existing components or services, technical complexity and semantic challenges constitute barriers to ensuring a successful and wide reuse of components and services. In the geospatial application domain, the barriers are self-evident due to heterogeneous geographic data, a lack of interoperability and complex analysis processes. Constructing workflows manually and discovering proper services and data that match user intents and preferences is difficult and time-consuming especially for users who are not trained in software development. Furthermore, considering the multi-objective nature of environmental modeling for the assessment of climate change impacts and the various types of geospatial data (e.g., formats, scales, and georeferencing systems) increases the complexity challenges. Automatic service composition approaches that provide semantics-based assistance in the process of workflow design have proven to be a solution to overcome these challenges and have become a frequent demand especially by end users who are not IT experts. In this light, the major contributions of this thesis are: (i) Simplification of service reuse and workflow design of applications for climate impact analysis by following the eXtreme Model-Driven Development (XMDD) paradigm. (ii) Design of a semantic domain model for climate impact analysis applications that comprises specifically designed services, ontologies that provide domain-specific vocabulary for referring to types and services, and the input/output annotation of the services using the terms defined in the ontologies. (iii) Application of a constraint-driven method for the automatic composition of workflows for analyzing the impacts of sea-level rise. The application scenario demonstrates the impact of domain modeling decisions on the results and the performance of the synthesis algorithm.}, language = {en} } @phdthesis{AlSaffar2016, author = {Al-Saffar, Loay Talib Ahmed}, title = {Analysing prerequisites, expectations, apprehensions, and attitudes of university students studying Computer science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98437}, school = {Universit{\"a}t Potsdam}, pages = {xii, 131}, year = {2016}, abstract = {The main objective of this dissertation is to analyse prerequisites, expectations, apprehensions, and attitudes of students studying computer science, who are willing to gain a bachelor degree. The research will also investigate in the students' learning style according to the Felder-Silverman model. These investigations fall in the attempt to make an impact on reducing the "dropout"/shrinkage rate among students, and to suggest a better learning environment. The first investigation starts with a survey that has been made at the computer science department at the University of Baghdad to investigate the attitudes of computer science students in an environment dominated by women, showing the differences in attitudes between male and female students in different study years. Students are accepted to university studies via a centrally controlled admission procedure depending mainly on their final score at school. This leads to a high percentage of students studying subjects they do not want. Our analysis shows that 75\% of the female students do not regret studying computer science although it was not their first choice. And according to statistics over previous years, women manage to succeed in their study and often graduate on top of their class. We finish with a comparison of attitudes between the freshman students of two different cultures and two different university enrolment procedures (University of Baghdad, in Iraq, and the University of Potsdam, in Germany) both with opposite gender majority. The second step of investigation took place at the department of computer science at the University of Potsdam in Germany and analyzes the learning styles of students studying the three major fields of study offered by the department (computer science, business informatics, and computer science teaching). Investigating the differences in learning styles between the students of those study fields who usually take some joint courses is important to be aware of which changes are necessary to be adopted in the teaching methods to address those different students. It was a two stage study using two questionnaires; the main one is based on the Index of Learning Styles Questionnaire of B. A. Solomon and R. M. Felder, and the second questionnaire was an investigation on the students' attitudes towards the findings of their personal first questionnaire. Our analysis shows differences in the preferences of learning style between male and female students of the different study fields, as well as differences between students with the different specialties (computer science, business informatics, and computer science teaching). The third investigation looks closely into the difficulties, issues, apprehensions and expectations of freshman students studying computer science. The study took place at the computer science department at the University of Potsdam with a volunteer sample of students. The goal is to determine and discuss the difficulties and issues that they are facing in their study that may lead them to think in dropping-out, changing the study field, or changing the university. The research continued with the same sample of students (with business informatics students being the majority) through more than three semesters. Difficulties and issues during the study were documented, as well as students' attitudes, apprehensions, and expectations. Some of the professors and lecturers opinions and solutions to some students' problems were also documented. Many participants had apprehensions and difficulties, especially towards informatics subjects. Some business informatics participants began to think of changing the university, in particular when they reached their third semester, others thought about changing their field of study. Till the end of this research, most of the participants continued in their studies (the study they have started with or the new study they have changed to) without leaving the higher education system.}, language = {en} } @phdthesis{Andjelkovic2021, author = {Andjelkovic, Marko}, title = {A methodology for characterization, modeling and mitigation of single event transient effects in CMOS standard combinational cells}, doi = {10.25932/publishup-53484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534843}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 216}, year = {2021}, abstract = {With the downscaling of CMOS technologies, the radiation-induced Single Event Transient (SET) effects in combinational logic have become a critical reliability issue for modern integrated circuits (ICs) intended for operation under harsh radiation conditions. The SET pulses generated in combinational logic may propagate through the circuit and eventually result in soft errors. It has thus become an imperative to address the SET effects in the early phases of the radiation-hard IC design. In general, the soft error mitigation solutions should accommodate both static and dynamic measures to ensure the optimal utilization of available resources. An efficient soft-error-aware design should address synergistically three main aspects: (i) characterization and modeling of soft errors, (ii) multi-level soft error mitigation, and (iii) online soft error monitoring. Although significant results have been achieved, the effectiveness of SET characterization methods, accuracy of predictive SET models, and efficiency of SET mitigation measures are still critical issues. Therefore, this work addresses the following topics: (i) Characterization and modeling of SET effects in standard combinational cells, (ii) Static mitigation of SET effects in standard combinational cells, and (iii) Online particle detection, as a support for dynamic soft error mitigation. Since the standard digital libraries are widely used in the design of radiation-hard ICs, the characterization of SET effects in standard cells and the availability of accurate SET models for the Soft Error Rate (SER) evaluation are the main prerequisites for efficient radiation-hard design. This work introduces an approach for the SPICE-based standard cell characterization with the reduced number of simulations, improved SET models and optimized SET sensitivity database. It has been shown that the inherent similarities in the SET response of logic cells for different input levels can be utilized to reduce the number of required simulations. Based on characterization results, the fitting models for the SET sensitivity metrics (critical charge, generated SET pulse width and propagated SET pulse width) have been developed. The proposed models are based on the principle of superposition, and they express explicitly the dependence of the SET sensitivity of individual combinational cells on design, operating and irradiation parameters. In contrast to the state-of-the-art characterization methodologies which employ extensive look-up tables (LUTs) for storing the simulation results, this work proposes the use of LUTs for storing the fitting coefficients of the SET sensitivity models derived from the characterization results. In that way the amount of characterization data in the SET sensitivity database is reduced significantly. The initial step in enhancing the robustness of combinational logic is the application of gate-level mitigation techniques. As a result, significant improvement of the overall SER can be achieved with minimum area, delay and power overheads. For the SET mitigation in standard cells, it is essential to employ the techniques that do not require modifying the cell structure. This work introduces the use of decoupling cells for improving the robustness of standard combinational cells. By insertion of two decoupling cells at the output of a target cell, the critical charge of the cell's output node is increased and the attenuation of short SETs is enhanced. In comparison to the most common gate-level techniques (gate upsizing and gate duplication), the proposed approach provides better SET filtering. However, as there is no single gate-level mitigation technique with optimal performance, a combination of multiple techniques is required. This work introduces a comprehensive characterization of gate-level mitigation techniques aimed to quantify their impact on the SET robustness improvement, as well as introduced area, delay and power overhead per gate. By characterizing the gate-level mitigation techniques together with the standard cells, the required effort in subsequent SER analysis of a target design can be reduced. The characterization database of the hardened standard cells can be utilized as a guideline for selection of the most appropriate mitigation solution for a given design. As a support for dynamic soft error mitigation techniques, it is important to enable the online detection of energetic particles causing the soft errors. This allows activating the power-greedy fault-tolerant configurations based on N-modular redundancy only at the high radiation levels. To enable such a functionality, it is necessary to monitor both the particle flux and the variation of particle LET, as these two parameters contribute significantly to the system SER. In this work, a particle detection approach based on custom-sized pulse stretching inverters is proposed. Employing the pulse stretching inverters connected in parallel enables to measure the particle flux in terms of the number of detected SETs, while the particle LET variations can be estimated from the distribution of SET pulse widths. This approach requires a purely digital processing logic, in contrast to the standard detectors which require complex mixed-signal processing. Besides the possibility of LET monitoring, additional advantages of the proposed particle detector are low detection latency and power consumption, and immunity to error accumulation. The results achieved in this thesis can serve as a basis for establishment of an overall soft-error-aware database for a given digital library, and a comprehensive multi-level radiation-hard design flow that can be implemented with the standard IC design tools. The following step will be to evaluate the achieved results with the irradiation experiments.}, language = {en} } @phdthesis{Awad2010, author = {Awad, Ahmed Mahmoud Hany Aly}, title = {A compliance management framework for business process models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49222}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Companies develop process models to explicitly describe their business operations. In the same time, business operations, business processes, must adhere to various types of compliance requirements. Regulations, e.g., Sarbanes Oxley Act of 2002, internal policies, best practices are just a few sources of compliance requirements. In some cases, non-adherence to compliance requirements makes the organization subject to legal punishment. In other cases, non-adherence to compliance leads to loss of competitive advantage and thus loss of market share. Unlike the classical domain-independent behavioral correctness of business processes, compliance requirements are domain-specific. Moreover, compliance requirements change over time. New requirements might appear due to change in laws and adoption of new policies. Compliance requirements are offered or enforced by different entities that have different objectives behind these requirements. Finally, compliance requirements might affect different aspects of business processes, e.g., control flow and data flow. As a result, it is infeasible to hard-code compliance checks in tools. Rather, a repeatable process of modeling compliance rules and checking them against business processes automatically is needed. This thesis provides a formal approach to support process design-time compliance checking. Using visual patterns, it is possible to model compliance requirements concerning control flow, data flow and conditional flow rules. Each pattern is mapped into a temporal logic formula. The thesis addresses the problem of consistency checking among various compliance requirements, as they might stem from divergent sources. Also, the thesis contributes to automatically check compliance requirements against process models using model checking. We show that extra domain knowledge, other than expressed in compliance rules, is needed to reach correct decisions. In case of violations, we are able to provide a useful feedback to the user. The feedback is in the form of parts of the process model whose execution causes the violation. In some cases, our approach is capable of providing automated remedy of the violation.}, language = {en} } @phdthesis{Bickel2008, author = {Bickel, Steffen}, title = {Learning under differing training and test distributions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33331}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {One of the main problems in machine learning is to train a predictive model from training data and to make predictions on test data. Most predictive models are constructed under the assumption that the training data is governed by the exact same distribution which the model will later be exposed to. In practice, control over the data collection process is often imperfect. A typical scenario is when labels are collected by questionnaires and one does not have access to the test population. For example, parts of the test population are underrepresented in the survey, out of reach, or do not return the questionnaire. In many applications training data from the test distribution are scarce because they are difficult to obtain or very expensive. Data from auxiliary sources drawn from similar distributions are often cheaply available. This thesis centers around learning under differing training and test distributions and covers several problem settings with different assumptions on the relationship between training and test distributions-including multi-task learning and learning under covariate shift and sample selection bias. Several new models are derived that directly characterize the divergence between training and test distributions, without the intermediate step of estimating training and test distributions separately. The integral part of these models are rescaling weights that match the rescaled or resampled training distribution to the test distribution. Integrated models are studied where only one optimization problem needs to be solved for learning under differing distributions. With a two-step approximation to the integrated models almost any supervised learning algorithm can be adopted to biased training data. In case studies on spam filtering, HIV therapy screening, targeted advertising, and other applications the performance of the new models is compared to state-of-the-art reference methods.}, language = {en} } @phdthesis{Blum2010, author = {Blum, Niklas}, title = {Formalization of a converged internet and telecommunications service environment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51146}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The programmable network envisioned in the 1990s within standardization and research for the Intelligent Network is currently coming into reality using IPbased Next Generation Networks (NGN) and applying Service-Oriented Architecture (SOA) principles for service creation, execution, and hosting. SOA is the foundation for both next-generation telecommunications and middleware architectures, which are rapidly converging on top of commodity transport services. Services such as triple/quadruple play, multimedia messaging, and presence are enabled by the emerging service-oriented IPMultimedia Subsystem (IMS), and allow telecommunications service providers to maintain, if not improve, their position in the marketplace. SOA becomes the de facto standard in next-generation middleware systems as the system model of choice to interconnect service consumers and providers within and between enterprises. We leverage previous research activities in overlay networking technologies along with recent advances in network abstraction, service exposure, and service creation to develop a paradigm for a service environment providing converged Internet and Telecommunications services that we call Service Broker. Such a Service Broker provides mechanisms to combine and mediate between different service paradigms from the two domains Internet/WWW and telecommunications. Furthermore, it enables the composition of services across these domains and is capable of defining and applying temporal constraints during creation and execution time. By adding network-awareness into the service fabric, such a Service Broker may also act as a next generation network-to-service element allowing the composition of crossdomain and cross-layer network and service resources. The contribution of this research is threefold: first, we analyze and classify principles and technologies from Information Technologies (IT) and telecommunications to identify and discuss issues allowing cross-domain composition in a converging service layer. Second, we discuss service composition methods allowing the creation of converged services on an abstract level; in particular, we present a formalized method for model-checking of such compositions. Finally, we propose a Service Broker architecture converging Internet and Telecom services. This environment enables cross-domain feature interaction in services through formalized obligation policies acting as constraints during service discovery, creation, and execution time.}, language = {en} } @phdthesis{Bordihn2011, author = {Bordihn, Henning}, title = {Contributions to the syntactical analysis beyond context-freeness}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59719}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Parsability approaches of several grammar formalisms generating also non-context-free languages are explored. Chomsky grammars, Lindenmayer systems, grammars with controlled derivations, and grammar systems are treated. Formal properties of these mechanisms are investigated, when they are used as language acceptors. Furthermore, cooperating distributed grammar systems are restricted so that efficient deterministic parsing without backtracking becomes possible. For this class of grammar systems, the parsing algorithm is presented and the feature of leftmost derivations is investigated in detail.}, language = {en} } @phdthesis{Brueckner2012, author = {Br{\"u}ckner, Michael}, title = {Prediction games : machine learning in the presence of an adversary}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-203-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60375}, school = {Universit{\"a}t Potsdam}, pages = {x, 121}, year = {2012}, abstract = {In many applications one is faced with the problem of inferring some functional relation between input and output variables from given data. Consider, for instance, the task of email spam filtering where one seeks to find a model which automatically assigns new, previously unseen emails to class spam or non-spam. Building such a predictive model based on observed training inputs (e.g., emails) with corresponding outputs (e.g., spam labels) is a major goal of machine learning. Many learning methods assume that these training data are governed by the same distribution as the test data which the predictive model will be exposed to at application time. That assumption is violated when the test data are generated in response to the presence of a predictive model. This becomes apparent, for instance, in the above example of email spam filtering. Here, email service providers employ spam filters and spam senders engineer campaign templates such as to achieve a high rate of successful deliveries despite any filters. Most of the existing work casts such situations as learning robust models which are unsusceptible against small changes of the data generation process. The models are constructed under the worst-case assumption that these changes are performed such to produce the highest possible adverse effect on the performance of the predictive model. However, this approach is not capable to realistically model the true dependency between the model-building process and the process of generating future data. We therefore establish the concept of prediction games: We model the interaction between a learner, who builds the predictive model, and a data generator, who controls the process of data generation, as an one-shot game. The game-theoretic framework enables us to explicitly model the players' interests, their possible actions, their level of knowledge about each other, and the order at which they decide for an action. We model the players' interests as minimizing their own cost function which both depend on both players' actions. The learner's action is to choose the model parameters and the data generator's action is to perturbate the training data which reflects the modification of the data generation process with respect to the past data. We extensively study three instances of prediction games which differ regarding the order in which the players decide for their action. We first assume that both player choose their actions simultaneously, that is, without the knowledge of their opponent's decision. We identify conditions under which this Nash prediction game has a meaningful solution, that is, a unique Nash equilibrium, and derive algorithms that find the equilibrial prediction model. As a second case, we consider a data generator who is potentially fully informed about the move of the learner. This setting establishes a Stackelberg competition. We derive a relaxed optimization criterion to determine the solution of this game and show that this Stackelberg prediction game generalizes existing prediction models. Finally, we study the setting where the learner observes the data generator's action, that is, the (unlabeled) test data, before building the predictive model. As the test data and the training data may be governed by differing probability distributions, this scenario reduces to learning under covariate shift. We derive a new integrated as well as a two-stage method to account for this data set shift. In case studies on email spam filtering we empirically explore properties of all derived models as well as several existing baseline methods. We show that spam filters resulting from the Nash prediction game as well as the Stackelberg prediction game in the majority of cases outperform other existing baseline methods.}, language = {en} } @phdthesis{Buchholz2006, author = {Buchholz, Henrik}, title = {Real-time visualization of 3D city models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13337}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization.}, language = {en} } @phdthesis{Boehm2013, author = {B{\"o}hm, Christoph}, title = {Enriching the Web of Data with topics and links}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68624}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis presents novel ideas and research findings for the Web of Data - a global data space spanning many so-called Linked Open Data sources. Linked Open Data adheres to a set of simple principles to allow easy access and reuse for data published on the Web. Linked Open Data is by now an established concept and many (mostly academic) publishers adopted the principles building a powerful web of structured knowledge available to everybody. However, so far, Linked Open Data does not yet play a significant role among common web technologies that currently facilitate a high-standard Web experience. In this work, we thoroughly discuss the state-of-the-art for Linked Open Data and highlight several shortcomings - some of them we tackle in the main part of this work. First, we propose a novel type of data source meta-information, namely the topics of a dataset. This information could be published with dataset descriptions and support a variety of use cases, such as data source exploration and selection. For the topic retrieval, we present an approach coined Annotated Pattern Percolation (APP), which we evaluate with respect to topics extracted from Wikipedia portals. Second, we contribute to entity linking research by presenting an optimization model for joint entity linking, showing its hardness, and proposing three heuristics implemented in the LINked Data Alignment (LINDA) system. Our first solution can exploit multi-core machines, whereas the second and third approach are designed to run in a distributed shared-nothing environment. We discuss and evaluate the properties of our approaches leading to recommendations which algorithm to use in a specific scenario. The distributed algorithms are among the first of their kind, i.e., approaches for joint entity linking in a distributed fashion. Also, we illustrate that we can tackle the entity linking problem on the very large scale with data comprising more than 100 millions of entity representations from very many sources. Finally, we approach a sub-problem of entity linking, namely the alignment of concepts. We again target a method that looks at the data in its entirety and does not neglect existing relations. Also, this concept alignment method shall execute very fast to serve as a preprocessing for further computations. Our approach, called Holistic Concept Matching (HCM), achieves the required speed through grouping the input by comparing so-called knowledge representations. Within the groups, we perform complex similarity computations, relation conclusions, and detect semantic contradictions. The quality of our result is again evaluated on a large and heterogeneous dataset from the real Web. In summary, this work contributes a set of techniques for enhancing the current state of the Web of Data. All approaches have been tested on large and heterogeneous real-world input.}, language = {en} } @phdthesis{Boehne2019, author = {B{\"o}hne, Sebastian}, title = {Different degrees of formality}, doi = {10.25932/publishup-42379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423795}, school = {Universit{\"a}t Potsdam}, pages = {VI, 167}, year = {2019}, abstract = {In this thesis we introduce the concept of the degree of formality. It is directed against a dualistic point of view, which only distinguishes between formal and informal proofs. This dualistic attitude does not respect the differences between the argumentations classified as informal and it is unproductive because the individual potential of the respective argumentation styles cannot be appreciated and remains untapped. This thesis has two parts. In the first of them we analyse the concept of the degree of formality (including a discussion about the respective benefits for each degree) while in the second we demonstrate its usefulness in three case studies. In the first case study we will repair Haskell B. Curry's view of mathematics, which incidentally is of great importance in the first part of this thesis, in light of the different degrees of formality. In the second case study we delineate how awareness of the different degrees of formality can be used to help students to learn how to prove. Third, we will show how the advantages of proofs of different degrees of formality can be combined by the development of so called tactics having a medium degree of formality. Together the three case studies show that the degrees of formality provide a convincing solution to the problem of untapped potential.}, language = {en} } @phdthesis{Boeken2022, author = {B{\"o}ken, Bj{\"o}rn}, title = {Improving prediction accuracy using dynamic information}, doi = {10.25932/publishup-58512}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585125}, school = {Universit{\"a}t Potsdam}, pages = {xii, 160}, year = {2022}, abstract = {Accurately solving classification problems nowadays is likely to be the most relevant machine learning task. Binary classification separating two classes only is algorithmically simpler but has fewer potential applications as many real-world problems are multi-class. On the reverse, separating only a subset of classes simplifies the classification task. Even though existing multi-class machine learning algorithms are very flexible regarding the number of classes, they assume that the target set Y is fixed and cannot be restricted once the training is finished. On the other hand, existing state-of-the-art production environments are becoming increasingly interconnected with the advance of Industry 4.0 and related technologies such that additional information can simplify the respective classification problems. In light of this, the main aim of this thesis is to introduce dynamic classification that generalizes multi-class classification such that the target class set can be restricted arbitrarily to a non-empty class subset M of Y at any time between two consecutive predictions. This task is solved by a combination of two algorithmic approaches. First, classifier calibration, which transforms predictions into posterior probability estimates that are intended to be well calibrated. The analysis provided focuses on monotonic calibration and in particular corrects wrong statements that appeared in the literature. It also reveals that bin-based evaluation metrics, which became popular in recent years, are unjustified and should not be used at all. Next, the validity of Platt scaling, which is the most relevant parametric calibration approach, is analyzed in depth. In particular, its optimality for classifier predictions distributed according to four different families of probability distributions as well its equivalence with Beta calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibration, extended variants on kernel density estimation and the ensemble method EKDE are introduced. Finally, the calibration techniques are evaluated using a simulation study with complete information as well as on a selection of 46 real-world data sets. Building on this, classifier calibration is applied as part of decomposition-based classification that aims to reduce multi-class problems to simpler (usually binary) prediction tasks. For the involved fusing step performed at prediction time, a new approach based on evidence theory is presented that uses classifier calibration to model mass functions. This allows the analysis of decomposition-based classification against a strictly formal background and to prove closed-form equations for the overall combinations. Furthermore, the same formalism leads to a consistent integration of dynamic class information, yielding a theoretically justified and computationally tractable dynamic classification model. The insights gained from this modeling are combined with pairwise coupling, which is one of the most relevant reduction-based classification approaches, such that all individual predictions are combined with a weight. This not only generalizes existing works on pairwise coupling but also enables the integration of dynamic class information. Lastly, a thorough empirical study is performed that compares all newly introduced approaches to existing state-of-the-art techniques. For this, evaluation metrics for dynamic classification are introduced that depend on corresponding sampling strategies. Thereafter, these are applied during a three-part evaluation. First, support vector machines and random forests are applied on 26 data sets from the UCI Machine Learning Repository. Second, two state-of-the-art deep neural networks are evaluated on five benchmark data sets from a relatively recent reference work. Here, computationally feasible strategies to apply the presented algorithms in combination with large-scale models are particularly relevant because a naive application is computationally intractable. Finally, reference data from a real-world process allowing the inclusion of dynamic class information are collected and evaluated. The results show that in combination with support vector machines and random forests, pairwise coupling approaches yield the best results, while in combination with deep neural networks, differences between the different approaches are mostly small to negligible. Most importantly, all results empirically confirm that dynamic classification succeeds in improving the respective prediction accuracies. Therefore, it is crucial to pass dynamic class information in respective applications, which requires an appropriate digital infrastructure.}, language = {en} } @phdthesis{Chen2023, author = {Chen, Junchao}, title = {A self-adaptive resilient method for implementing and managing the high-reliability processing system}, doi = {10.25932/publishup-58313}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583139}, school = {Universit{\"a}t Potsdam}, pages = {XXIII, 167}, year = {2023}, abstract = {As a result of CMOS scaling, radiation-induced Single-Event Effects (SEEs) in electronic circuits became a critical reliability issue for modern Integrated Circuits (ICs) operating under harsh radiation conditions. SEEs can be triggered in combinational or sequential logic by the impact of high-energy particles, leading to destructive or non-destructive faults, resulting in data corruption or even system failure. Typically, the SEE mitigation methods are deployed statically in processing architectures based on the worst-case radiation conditions, which is most of the time unnecessary and results in a resource overhead. Moreover, the space radiation conditions are dynamically changing, especially during Solar Particle Events (SPEs). The intensity of space radiation can differ over five orders of magnitude within a few hours or days, resulting in several orders of magnitude fault probability variation in ICs during SPEs. This thesis introduces a comprehensive approach for designing a self-adaptive fault resilient multiprocessing system to overcome the static mitigation overhead issue. This work mainly addresses the following topics: (1) Design of on-chip radiation particle monitor for real-time radiation environment detection, (2) Investigation of space environment predictor, as support for solar particle events forecast, (3) Dynamic mode configuration in the resilient multiprocessing system. Therefore, according to detected and predicted in-flight space radiation conditions, the target system can be configured to use no mitigation or low-overhead mitigation during non-critical periods of time. The redundant resources can be used to improve system performance or save power. On the other hand, during increased radiation activity periods, such as SPEs, the mitigation methods can be dynamically configured appropriately depending on the real-time space radiation environment, resulting in higher system reliability. Thus, a dynamic trade-off in the target system between reliability, performance and power consumption in real-time can be achieved. All results of this work are evaluated in a highly reliable quad-core multiprocessing system that allows the self-adaptive setting of optimal radiation mitigation mechanisms during run-time. Proposed methods can serve as a basis for establishing a comprehensive self-adaptive resilient system design process. Successful implementation of the proposed design in the quad-core multiprocessor shows its application perspective also in the other designs.}, language = {en} } @phdthesis{Christgau2017, author = {Christgau, Steffen}, title = {One-sided communication on a non-cache-coherent many-core architecture}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403100}, school = {Universit{\"a}t Potsdam}, pages = {219}, year = {2017}, abstract = {Aktuelle Mehrkernprozessoren stellen parallele Systeme dar, die den darauf ausgef{\"u}hrten Programmen gemeinsamen Speicher zur Verf{\"u}gung stellen. Sowohl die ansteigende Kernanzahlen in sogenannten Vielkernprozessoren (many-core processors) als auch die weiterhin steigende Leistungsf{\"a}higkeit der einzelnen Kerne erfordert hohe Bandbreiten, die das Speichersystem des Prozessors liefern muss. Hardware-basierte Cache-Koh{\"a}renz st{\"o}ßt in aktuellen Vielkernprozessoren an Grenzen des praktisch Machbaren. Dementsprechend m{\"u}ssen alternative Architekturen und entsprechend geeignete Programmiermodelle untersucht werden. In dieser Arbeit wird der Single-Chip Cloud Computer (SCC), ein nicht-cachekoh{\"a}renter Vielkernprozessor betrachtet, der aus 48, {\"u}ber ein Gitternetzwerk verbundenen Kernen besteht. Obwohl der Prozessor f{\"u}r nachrichten-basierte Kommunikation entwickelt worden ist, zeigen die Ergebnisse dieser Arbeit, dass einseitige Kommunikation auf Basis gemeinsamen Speichers effizient auf diesem Architekturtyp realisiert werden kann. Einseitige Kommunikation erm{\"o}glicht Datenaustausch zwischen Prozessen, bei der der Empf{\"a}nger keine Details {\"u}ber die stattfindende Kommunikation besitzen muss. Im Sinne des MPI-Standards ist so ein Zugriff auf Speicher entfernter Prozesse m{\"o}glich. Zur Umsetzung dieses Konzepts auf nicht-koh{\"a}renten Architekturen werden in dieser Arbeit sowohl eine effiziente Prozesssynchronisation als auch ein Kommunikationsschema auf Basis von software-basierter Cache-Koh{\"a}renz erarbeitet und untersucht. Die Prozesssynchronisation setzt das Konzept der general active target synchronization aus dem MPI-Standard um. Ein existierendes Klassifikationsschema f{\"u}r dessen Implementierungen wird erweitert und zur Identifikation einer geeigneten Klasse f{\"u}r die nicht-koh{\"a}rente Plattform des SCC verwendet. Auf Grundlage der Klassifikation werden existierende Implementierungen analysiert, daraus geeignete Konzepte extrahiert und ein leichtgewichtiges Synchronisationsprotokoll f{\"u}r den SCC entwickelt, das sowohl gemeinsamen Speicher als auch ungecachete Speicherzugriffe verwendet. Das vorgestellte Schema ist nicht anf{\"a}llig f{\"u}r Verz{\"o}gerungen zwischen Prozessen und erlaubt direkte Kommunikation sobald beide Kommunikationspartner daf{\"u}r bereit sind. Die experimentellen Ergebnisse zeigen ein sehr gutes Skaliserungsverhalten und eine f{\"u}nffach geringere Latenz f{\"u}r die Prozesssynchronisation im Vergleich zu einer auf Nachrichten basierenden MPI-Implementierung des SCC. F{\"u}r die Kommunikation wird mit SCOSCo ein auf gemeinsamen Speicher und software-basierter Cache-Koh{\"a}renz basierenden Konzept vorgestellt. Entsprechende Anforderungen an die Koh{\"a}renz, die dem MPI-Standard entsprechen, werden aufgestellt und eine schlanke Implementierung auf Basis der Hard- und Software-Funktionalit{\"a}ten des SCCs entwickelt. Trotz einer aufgedecktem Fehlfunktion im Speichersubsystem des SCC kann in den experimentellen Auswertungen von Mikrobenchmarks eine f{\"u}nffach verbesserte Bandbreite und eine nahezu vierfach verringerte Latenz beobachtet werden. In Anwendungsexperimenten, wie einer dreidimensionalen schnellen Fourier-Transformation, kann der Anteil der Kommunikation an der Laufzeit um den Faktor f{\"u}nf reduziert werden. In Erg{\"a}nzung dazu werden in dieser Arbeit Konzepte aufgestellt, die in zuk{\"u}nftigen Architekturen, die Cache-Koh{\"a}renz nicht auf einer globalen Ebene des Prozessors liefern k{\"o}nnen, f{\"u}r die Umsetzung von Software-basierter Koh{\"a}renz f{\"u}r einseitige Kommunikation hilfreich sind.}, language = {en} } @inproceedings{CurzonKalasSchubertetal.2015, author = {Curzon, Paul and Kalas, Ivan and Schubert, Sigrid and Schaper, Niclas and Barnes, Jan and Kennewell, Steve and Br{\"o}ker, Kathrin and Kastens, Uwe and Magenheim, Johannes and Dagiene, Valentina and Stupuriene, Gabriele and Ellis, Jason Brent and Abreu-Ellis, Carla Reis and Grillenberger, Andreas and Romeike, Ralf and Haugsbakken, Halvdan and Jones, Anthony and Lewin, Cathy and McNicol, Sarah and Nelles, Wolfgang and Neugebauer, Jonas and Ohrndorf, Laura and Schaper, Niclas and Schubert, Sigrid and Opel, Simone and Kramer, Matthias and Trommen, Michael and Pottb{\"a}cker, Florian and Ilaghef, Youssef and Passig, David and Tzuriel, David and Kedmi, Ganit Eshel and Saito, Toshinori and Webb, Mary and Weigend, Michael and Bottino, Rosa and Chioccariello, Augusto and Christensen, Rhonda and Knezek, Gerald and Gioko, Anthony Maina and Angondi, Enos Kiforo and Waga, Rosemary and Ohrndorf, Laura and Or-Bach, Rachel and Preston, Christina and Younie, Sarah and Przybylla, Mareen and Romeike, Ralf and Reynolds, Nicholas and Swainston, Andrew and Bendrups, Faye and Sysło, Maciej M. and Kwiatkowska, Anna Beata and Zieris, Holger and Gerstberger, Herbert and M{\"u}ller, Wolfgang and B{\"u}chner, Steffen and Opel, Simone and Schiller, Thomas and Wegner, Christian and Zender, Raphael and Lucke, Ulrike and Diethelm, Ira and Syrbe, J{\"o}rn and Lai, Kwok-Wing and Davis, Niki and Eickelmann, Birgit and Erstad, Ola and Fisser, Petra and Gibson, David and Khaddage, Ferial and Knezek, Gerald and Micheuz, Peter and Kloos, Carlos Delgado}, title = {KEYCIT 2014}, editor = {Brinda, Torsten and Reynolds, Nicholas and Romeike, Ralf and Schwill, Andreas}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-292-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325}, pages = {438}, year = {2015}, abstract = {In our rapidly changing world it is increasingly important not only to be an expert in a chosen field of study but also to be able to respond to developments, master new approaches to solving problems, and fulfil changing requirements in the modern world and in the job market. In response to these needs key competencies in understanding, developing and using new digital technologies are being brought into focus in school and university programmes. The IFIP TC3 conference "KEYCIT - Key Competences in Informatics and ICT (KEYCIT 2014)" was held at the University of Potsdam in Germany from July 1st to 4th, 2014 and addressed the combination of key competencies, Informatics and ICT in detail. The conference was organized into strands focusing on secondary education, university education and teacher education (organized by IFIP WGs 3.1 and 3.3) and provided a forum to present and to discuss research, case studies, positions, and national perspectives in this field.}, language = {en} } @phdthesis{Decker2009, author = {Decker, Gero}, title = {Design and analysis of process choreographies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40761}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {With the rise of electronic integration between organizations, the need for a precise specification of interaction behavior increases. Information systems, replacing interaction previously carried out by humans via phone, faxes and emails, require a precise specification for handling all possible situations. Such interaction behavior is described in process choreographies. Choreographies enumerate the roles involved, the allowed interactions, the message contents and the behavioral dependencies between interactions. Choreographies serve as interaction contract and are the starting point for adapting existing business processes and systems or for implementing new software components. As a thorough analysis and comparison of choreography modeling languages is missing in the literature, this thesis introduces a requirements framework for choreography languages and uses it for comparing current choreography languages. Language proposals for overcoming the limitations are given for choreography modeling on the conceptual and on the technical level. Using an interconnection modeling style, behavioral dependencies are defined on a per-role basis and different roles are interconnected using message flow. This thesis reveals a number of modeling "anti-patterns" for interconnection modeling, motivating further investigations on choreography languages following the interaction modeling style. Here, interactions are seen as atomic building blocks and the behavioral dependencies between them are defined globally. Two novel language proposals are put forward for this modeling style which have already influenced industrial standardization initiatives. While avoiding many of the pitfalls of interconnection modeling, new anomalies can arise in interaction models. A choreography might not be realizable, i.e. there does not exist a set of interacting roles that collectively realize the specified behavior. This thesis investigates different dimensions of realizability.}, language = {en} } @phdthesis{Dick2016, author = {Dick, Uwe}, title = {Discriminative Classification Models for Internet Security}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102593}, school = {Universit{\"a}t Potsdam}, pages = {x, 57}, year = {2016}, abstract = {Services that operate over the Internet are under constant threat of being exposed to fraudulent use. Maintaining good user experience for legitimate users often requires the classification of entities as malicious or legitimate in order to initiate countermeasures. As an example, inbound email spam filters decide for spam or non-spam. They can base their decision on both the content of each email as well as on features that summarize prior emails received from the sending server. In general, discriminative classification methods learn to distinguish positive from negative entities. Each decision for a label may be based on features of the entity and related entities. When labels of related entities have strong interdependencies---as can be assumed e.g. for emails being delivered by the same user---classification decisions should not be made independently and dependencies should be modeled in the decision function. This thesis addresses the formulation of discriminative classification problems that are tailored for the specific demands of the following three Internet security applications. Theoretical and algorithmic solutions are devised to protect an email service against flooding of user inboxes, to mitigate abusive usage of outbound email servers, and to protect web servers against distributed denial of service attacks. In the application of filtering an inbound email stream for unsolicited emails, utilizing features that go beyond each individual email's content can be valuable. Information about each sending mail server can be aggregated over time and may help in identifying unwanted emails. However, while this information will be available to the deployed email filter, some parts of the training data that are compiled by third party providers may not contain this information. The missing features have to be estimated at training time in order to learn a classification model. In this thesis an algorithm is derived that learns a decision function that integrates over a distribution of values for each missing entry. The distribution of missing values is a free parameter that is optimized to learn an optimal decision function. The outbound stream of emails of an email service provider can be separated by the customer IDs that ask for delivery. All emails that are sent by the same ID in the same period of time are related, both in content and in label. Hijacked customer accounts may send batches of unsolicited emails to other email providers, which in turn might blacklist the sender's email servers after detection of incoming spam emails. The risk of being blocked from further delivery depends on the rate of outgoing unwanted emails and the duration of high spam sending rates. An optimization problem is developed that minimizes the expected cost for the email provider by learning a decision function that assigns a limit on the sending rate to customers based on the each customer's email stream. Identifying attacking IPs during HTTP-level DDoS attacks allows to block those IPs from further accessing the web servers. DDoS attacks are usually carried out by infected clients that are members of the same botnet and show similar traffic patterns. HTTP-level attacks aim at exhausting one or more resources of the web server infrastructure, such as CPU time. If the joint set of attackers cannot increase resource usage close to the maximum capacity, no effect will be experienced by legitimate users of hosted web sites. However, if the additional load raises the computational burden towards the critical range, user experience will degrade until service may be unavailable altogether. As the loss of missing one attacker depends on block decisions for other attackers---if most other attackers are detected, not blocking one client will likely not be harmful---a structured output model has to be learned. In this thesis an algorithm is developed that learns a structured prediction decoder that searches the space of label assignments, guided by a policy. Each model is evaluated on real-world data and is compared to reference methods. The results show that modeling each classification problem according to the specific demands of the task improves performance over solutions that do not consider the constraints inherent to an application.}, language = {en} } @phdthesis{Dornhege2006, author = {Dornhege, Guido}, title = {Increasing information transfer rates for brain-computer interfacing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7690}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert M{\"u}ller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate fields such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made. In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points: Establishing a performance measure based on information theory: I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable. Transfer and development of suitable signal processing and machine learning techniques: One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 \%. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually. Implementation of the Berlin brain computer interface and realization of suitable experiments: Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful.}, subject = {Kybernetik}, language = {en} } @phdthesis{Dramlitsch2002, author = {Dramlitsch, Thomas}, title = {Distributed computations in a dynamic, heterogeneous Grid environment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000759}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren {\"u}ber Hochgeschwindigkeitsnetzwerke erm{\"o}glicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazit{\"a}ten zu einer Gesamtheit zusammengefasst werden k{\"o}nnen. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, f{\"u}r die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazit{\"a}ten nicht l{\"o}sbar sind, erstrecken sich durch s{\"a}mtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molek{\"u}lphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur einige Gebiete zu nennen. Je nach Art der Problemstellung und des L{\"o}sungsverfahrens gestalten sich solche "Meta-Berechnungen" mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren) herrscht. Dies ist dadurch begr{\"u}ndet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren auf demselben Grossrechner oder Cluster um zwei bis vier Gr{\"o}ssenordnungen h{\"o}her bzw. niedriger liegen als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen. Dennoch bricht nunmehr eine Zeit an, in der es m{\"o}glich ist Berechnungen auf solch virtuellen Supercomputern auch mit kommunikationsintensiven Programmen durchzuf{\"u}hren. Eine grosse Klasse von kommunikations- und berechnungsintensiven Programmen ist diejenige, die die L{\"o}sung von Differentialgleichungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur effizienteren Durchf{\"u}hrung von solch verteilten Berechnungen werden entwickelt, analysiert und implementiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so zu erweitern, dass sie vorhandene Informationen (z.B. verf{\"u}gbar durch das Globus Toolkit) {\"u}ber Maschinen und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformationen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit f{\"u}r die Ausf{\"u}hrung auf Grossrechnern oder Clustern entwickelt wurde.}, language = {en} } @misc{EbertLamprechtSteffenetal.2012, author = {Ebert, Birgitta E. and Lamprecht, Anna-Lena and Steffen, Bernhard and Blank, Lars M.}, title = {Flux-P}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1054}, issn = {1866-8372}, doi = {10.25932/publishup-47669}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476696}, pages = {872 -- 890}, year = {2012}, abstract = {Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.}, language = {en} } @misc{Fandino2019, author = {Fandi{\~n}o, Jorge}, title = {Founded (auto)epistemic equilibrium logic satisfies epistemic splitting}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1060}, issn = {1866-8372}, doi = {10.25932/publishup-46968}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469685}, pages = {671 -- 687}, year = {2019}, abstract = {In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond's original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.}, language = {en} } @phdthesis{Floeter2005, author = {Fl{\"o}ter, Andr{\´e}}, title = {Analyzing biological expression data based on decision tree induction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6416}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Modern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples. Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information. At present, various methods are used for this purpose. One superordinate class of these meth­ods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models. Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees. The concept of comparing sets of decision trees is developed. This method offers the pos­sibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the un­derstanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction. A second approach exploits the structure of sets of decision trees for the discovery of com­binatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees ­ a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations. Both the introduced methods are available as software tools. They can be applied consecu­tively or separately. That way they make up a package of analytical tools that usefully supplement existing methods. By means of these tools, the newly introduced methods were able to confirm existing knowl­edge and to suggest interesting and new relationships between metabolites.}, subject = {Molekulare Bioinformatik}, language = {en} } @phdthesis{Frank2024, author = {Frank, Mario}, title = {On synthesising Linux kernel module components from Coq formalisations}, doi = {10.25932/publishup-64255}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-642558}, school = {Universit{\"a}t Potsdam}, pages = {IX, 78}, year = {2024}, abstract = {This thesis presents an attempt to use source code synthesised from Coq formalisations of device drivers for existing (micro)kernel operating systems, with a particular focus on the Linux Kernel. In the first part, the technical background and related work are described. The focus is here on the possible approaches to synthesising certified software with Coq, namely the extraction to functional languages using the Coq extraction plugin and the extraction to Clight code using the CertiCoq plugin. It is noted that the implementation of CertiCoq is verified, whereas this is not the case for the Coq extraction plugin. Consequently, there is a correctness guarantee for the generated Clight code which does not hold for the code being generated by the Coq extraction plugin. Furthermore, the differences between user space and kernel space software are discussed in relation to Linux device drivers. It is elaborated that it is not possible to generate working Linux kernel module components using the Coq extraction plugin without significant modifications. In contrast, it is possible to produce working user space drivers both with the Coq extraction plugin and CertiCoq. The subsequent parts describe the main contributions of the thesis. In the second part, it is demonstrated how to extend the Coq extraction plugin to synthesise foreign function calls between the functional language OCaml and the imperative language C. This approach has the potential to improve the type-safety of user space drivers. Furthermore, it is shown that the code being synthesised by CertiCoq cannot be used in kernel space without modifications to the necessary runtime. Consequently, the necessary modifications to the runtimes of CertiCoq and VeriFFI are introduced, resulting in the runtimes becoming compatible components of a Linux kernel module. Furthermore, justifications for the transformations are provided and possible further extensions to both plugins and solutions to failing garbage collection calls in kernel space are discussed. The third part presents a proof of concept device driver for the Linux Kernel. To achieve this, the event handler of the original PC Speaker driver is partially formalised in Coq. Furthermore, some relevant formal properties of the formalised functionality are discussed. Subsequently, a kernel module is defined, utilising the modified variants of CertiCoq and VeriFFI to compile a working device driver. It is furthermore shown that it is possible to compile the synthesised code with CompCert, thereby extending the guarantee of correctness to the assembly layer. This is followed by a performance evaluation that compares a naive formalisation of the PC speaker functionality with the original PC Speaker driver pointing out the weaknesses in the formalisation and possible improvements. The part closes with a summary of the results, their implications and open questions being raised. The last part lists all used sources, separated into scientific literature, documentations or reference manuals and artifacts, i.e. source code.}, language = {en} } @phdthesis{Gebser2011, author = {Gebser, Martin}, title = {Proof theory and algorithms for answer set programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55425}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Answer Set Programming (ASP) is an emerging paradigm for declarative programming, in which a computational problem is specified by a logic program such that particular models, called answer sets, match solutions. ASP faces a growing range of applications, demanding for high-performance tools able to solve complex problems. ASP integrates ideas from a variety of neighboring fields. In particular, automated techniques to search for answer sets are inspired by Boolean Satisfiability (SAT) solving approaches. While the latter have firm proof-theoretic foundations, ASP lacks formal frameworks for characterizing and comparing solving methods. Furthermore, sophisticated search patterns of modern SAT solvers, successfully applied in areas like, e.g., model checking and verification, are not yet established in ASP solving. We address these deficiencies by, for one, providing proof-theoretic frameworks that allow for characterizing, comparing, and analyzing approaches to answer set computation. For another, we devise modern ASP solving algorithms that integrate and extend state-of-the-art techniques for Boolean constraint solving. We thus contribute to the understanding of existing ASP solving approaches and their interconnections as well as to their enhancement by incorporating sophisticated search patterns. The central idea of our approach is to identify atomic as well as composite constituents of a propositional logic program with Boolean variables. This enables us to describe fundamental inference steps, and to selectively combine them in proof-theoretic characterizations of various ASP solving methods. In particular, we show that different concepts of case analyses applied by existing ASP solvers implicate mutual exponential separations regarding their best-case complexities. We also develop a generic proof-theoretic framework amenable to language extensions, and we point out that exponential separations can likewise be obtained due to case analyses on them. We further exploit fundamental inference steps to derive Boolean constraints characterizing answer sets. They enable the conception of ASP solving algorithms including search patterns of modern SAT solvers, while also allowing for direct technology transfers between the areas of ASP and SAT solving. Beyond the search for one answer set of a logic program, we address the enumeration of answer sets and their projections to a subvocabulary, respectively. The algorithms we develop enable repetition-free enumeration in polynomial space without being intrusive, i.e., they do not necessitate any modifications of computations before an answer set is found. Our approach to ASP solving is implemented in clasp, a state-of-the-art Boolean constraint solver that has successfully participated in recent solver competitions. Although we do here not address the implementation techniques of clasp or all of its features, we present the principles of its success in the context of ASP solving.}, language = {en} } @phdthesis{Ghasemzadeh2005, author = {Ghasemzadeh, Mohammad}, title = {A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6378}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial.}, subject = {Bin{\"a}res Entscheidungsdiagramm}, language = {en} } @phdthesis{Glander2012, author = {Glander, Tassilo}, title = {Multi-scale representations of virtual 3D city models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64117}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a virtual 3D city model may create visual noise and overload the users with information. Objects are subject to perspective foreshortening and may be occluded or not displayed in a meaningful way, as they are too small. In this thesis we present abstraction techniques that automatically process virtual 3D city and landscape models to derive abstracted representations. These have a reduced degree of detail, while essential characteristics are preserved. After introducing definitions for model, scale, and multi-scale representations, we discuss the fundamentals of map generalization as well as techniques for 3D generalization. The first presented technique is a cell-based generalization of virtual 3D city models. It creates abstract representations that have a highly reduced level of detail while maintaining essential structures, e.g., the infrastructure network, landmark buildings, and free spaces. The technique automatically partitions the input virtual 3D city model into cells based on the infrastructure network. The single building models contained in each cell are aggregated to abstracted cell blocks. Using weighted infrastructure elements, cell blocks can be computed on different hierarchical levels, storing the hierarchy relation between the cell blocks. Furthermore, we identify initial landmark buildings within a cell by comparing the properties of individual buildings with the aggregated properties of the cell. For each block, the identified landmark building models are subtracted using Boolean operations and integrated in a photo-realistic way. Finally, for the interactive 3D visualization we discuss the creation of the virtual 3D geometry and their appearance styling through colors, labeling, and transparency. We demonstrate the technique with example data sets. Additionally, we discuss applications of generalization lenses and transitions between abstract representations. The second technique is a real-time-rendering technique for geometric enhancement of landmark objects within a virtual 3D city model. Depending on the virtual camera distance, landmark objects are scaled to ensure their visibility within a specific distance interval while deforming their environment. First, in a preprocessing step a landmark hierarchy is computed, this is then used to derive distance intervals for the interactive rendering. At runtime, using the virtual camera distance, a scaling factor is computed and applied to each landmark. The scaling factor is interpolated smoothly at the interval boundaries using cubic B{\´e}zier splines. Non-landmark geometry that is near landmark objects is deformed with respect to a limited number of landmarks. We demonstrate the technique by applying it to a highly detailed virtual 3D city model and a generalized 3D city model. In addition we discuss an adaptation of the technique for non-linear projections and mobile devices. The third technique is a real-time rendering technique to create abstract 3D isocontour visualization of virtual 3D terrain models. The virtual 3D terrain model is visualized as a layered or stepped relief. The technique works without preprocessing and, as it is implemented using programmable graphics hardware, can be integrated with minimal changes into common terrain rendering techniques. Consequently, the computation is done in the rendering pipeline for each vertex, primitive, i.e., triangle, and fragment. For each vertex, the height is quantized to the nearest isovalue. For each triangle, the vertex configuration with respect to their isovalues is determined first. Using the configuration, the triangle is then subdivided. The subdivision forms a partial step geometry aligned with the triangle. For each fragment, the surface appearance is determined, e.g., depending on the surface texture, shading, and height-color-mapping. Flexible usage of the technique is demonstrated with applications from focus+context visualization, out-of-core terrain rendering, and information visualization. This thesis presents components for the creation of abstract representations of virtual 3D city and landscape models. Re-using visual language from cartography, the techniques enable users to build on their experience with maps when interpreting these representations. Simultaneously, characteristics of 3D geovirtual environments are taken into account by addressing and discussing, e.g., continuous scale, interaction, and perspective.}, language = {en} } @phdthesis{Haider2013, author = {Haider, Peter}, title = {Prediction with Mixture Models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69617}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Learning a model for the relationship between the attributes and the annotated labels of data examples serves two purposes. Firstly, it enables the prediction of the label for examples without annotation. Secondly, the parameters of the model can provide useful insights into the structure of the data. If the data has an inherent partitioned structure, it is natural to mirror this structure in the model. Such mixture models predict by combining the individual predictions generated by the mixture components which correspond to the partitions in the data. Often the partitioned structure is latent, and has to be inferred when learning the mixture model. Directly evaluating the accuracy of the inferred partition structure is, in many cases, impossible because the ground truth cannot be obtained for comparison. However it can be assessed indirectly by measuring the prediction accuracy of the mixture model that arises from it. This thesis addresses the interplay between the improvement of predictive accuracy by uncovering latent cluster structure in data, and further addresses the validation of the estimated structure by measuring the accuracy of the resulting predictive model. In the application of filtering unsolicited emails, the emails in the training set are latently clustered into advertisement campaigns. Uncovering this latent structure allows filtering of future emails with very low false positive rates. In order to model the cluster structure, a Bayesian clustering model for dependent binary features is developed in this thesis. Knowing the clustering of emails into campaigns can also aid in uncovering which emails have been sent on behalf of the same network of captured hosts, so-called botnets. This association of emails to networks is another layer of latent clustering. Uncovering this latent structure allows service providers to further increase the accuracy of email filtering and to effectively defend against distributed denial-of-service attacks. To this end, a discriminative clustering model is derived in this thesis that is based on the graph of observed emails. The partitionings inferred using this model are evaluated through their capacity to predict the campaigns of new emails. Furthermore, when classifying the content of emails, statistical information about the sending server can be valuable. Learning a model that is able to make use of it requires training data that includes server statistics. In order to also use training data where the server statistics are missing, a model that is a mixture over potentially all substitutions thereof is developed. Another application is to predict the navigation behavior of the users of a website. Here, there is no a priori partitioning of the users into clusters, but to understand different usage scenarios and design different layouts for them, imposing a partitioning is necessary. The presented approach simultaneously optimizes the discriminative as well as the predictive power of the clusters. Each model is evaluated on real-world data and compared to baseline methods. The results show that explicitly modeling the assumptions about the latent cluster structure leads to improved predictions compared to the baselines. It is beneficial to incorporate a small number of hyperparameters that can be tuned to yield the best predictions in cases where the prediction accuracy can not be optimized directly.}, language = {en} } @phdthesis{Harmeling2004, author = {Harmeling, Stefan}, title = {Independent component analysis and beyond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001540}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {'Independent component analysis' (ICA) ist ein Werkzeug der statistischen Datenanalyse und Signalverarbeitung, welches multivariate Signale in ihre Quellkomponenten zerlegen kann. Obwohl das klassische ICA Modell sehr n{\"u}tzlich ist, gibt es viele Anwendungen, die Erweiterungen von ICA erfordern. In dieser Dissertation pr{\"a}sentieren wir neue Verfahren, die die Funktionalit{\"a}t von ICA erweitern: (1) Zuverl{\"a}ssigkeitsanalyse und Gruppierung von unabh{\"a}ngigen Komponenten durch Hinzuf{\"u}gen von Rauschen, (2) robuste und {\"u}berbestimmte ('over-complete') ICA durch Ausreissererkennung, und (3) nichtlineare ICA mit Kernmethoden.}, language = {en} } @phdthesis{Hecher2021, author = {Hecher, Markus}, title = {Advanced tools and methods for treewidth-based problem solving}, doi = {10.25932/publishup-51251}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512519}, school = {Universit{\"a}t Potsdam}, pages = {xv, 184}, year = {2021}, abstract = {In the last decades, there was a notable progress in solving the well-known Boolean satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers. One of the reasons why these solvers are so fast are structural properties of instances that are utilized by the solver's interna. This thesis deals with the well-studied structural property treewidth, which measures the closeness of an instance to being a tree. In fact, there are many problems parameterized by treewidth that are solvable in polynomial time in the instance size when parameterized by treewidth. In this work, we study advanced treewidth-based methods and tools for problems in knowledge representation and reasoning (KR). Thereby, we provide means to establish precise runtime results (upper bounds) for canonical problems relevant to KR. Then, we present a new type of problem reduction, which we call decomposition-guided (DG) that allows us to precisely monitor the treewidth when reducing from one problem to another problem. This new reduction type will be the basis for a long-open lower bound result for quantified Boolean formulas and allows us to design a new methodology for establishing runtime lower bounds for problems parameterized by treewidth. Finally, despite these lower bounds, we provide an efficient implementation of algorithms that adhere to treewidth. Our approach finds suitable abstractions of instances, which are subsequently refined in a recursive fashion, and it uses Sat solvers for solving subproblems. It turns out that our resulting solver is quite competitive for two canonical counting problems related to Sat.}, language = {en} } @misc{HollmannFrohmeEndrullatetal.2020, author = {Hollmann, Susanne and Frohme, Marcus and Endrullat, Christoph and Kremer, Andreas and D'Elia, Domenica and Regierer, Babette and Nechyporenko, Alina}, title = {Ten simple rules on how to write a standard operating procedure}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525877}, pages = {12}, year = {2020}, abstract = {Research publications and data nowadays should be publicly available on the internet and, theoretically, usable for everyone to develop further research, products, or services. The long-term accessibility of research data is, therefore, fundamental in the economy of the research production process. However, the availability of data is not sufficient by itself, but also their quality must be verifiable. Measures to ensure reuse and reproducibility need to include the entire research life cycle, from the experimental design to the generation of data, quality control, statistical analysis, interpretation, and validation of the results. Hence, high-quality records, particularly for providing a string of documents for the verifiable origin of data, are essential elements that can act as a certificate for potential users (customers). These records also improve the traceability and transparency of data and processes, therefore, improving the reliability of results. Standards for data acquisition, analysis, and documentation have been fostered in the last decade driven by grassroot initiatives of researchers and organizations such as the Research Data Alliance (RDA). Nevertheless, what is still largely missing in the life science academic research are agreed procedures for complex routine research workflows. Here, well-crafted documentation like standard operating procedures (SOPs) offer clear direction and instructions specifically designed to avoid deviations as an absolute necessity for reproducibility. Therefore, this paper provides a standardized workflow that explains step by step how to write an SOP to be used as a starting point for appropriate research documentation.}, language = {en} } @phdthesis{Holz2013, author = {Holz, Christian}, title = {3D from 2D touch}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67796}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {While interaction with computers used to be dominated by mice and keyboards, new types of sensors now allow users to interact through touch, speech, or using their whole body in 3D space. These new interaction modalities are often referred to as "natural user interfaces" or "NUIs." While 2D NUIs have experienced major success on billions of mobile touch devices sold, 3D NUI systems have so far been unable to deliver a mobile form factor, mainly due to their use of cameras. The fact that cameras require a certain distance from the capture volume has prevented 3D NUI systems from reaching the flat form factor mobile users expect. In this dissertation, we address this issue by sensing 3D input using flat 2D sensors. The systems we present observe the input from 3D objects as 2D imprints upon physical contact. By sampling these imprints at very high resolutions, we obtain the objects' textures. In some cases, a texture uniquely identifies a biometric feature, such as the user's fingerprint. In other cases, an imprint stems from the user's clothing, such as when walking on multitouch floors. By analyzing from which part of the 3D object the 2D imprint results, we reconstruct the object's pose in 3D space. While our main contribution is a general approach to sensing 3D input on 2D sensors upon physical contact, we also demonstrate three applications of our approach. (1) We present high-accuracy touch devices that allow users to reliably touch targets that are a third of the size of those on current touch devices. We show that different users and 3D finger poses systematically affect touch sensing, which current devices perceive as random input noise. We introduce a model for touch that compensates for this systematic effect by deriving the 3D finger pose and the user's identity from each touch imprint. We then investigate this systematic effect in detail and explore how users conceptually touch targets. Our findings indicate that users aim by aligning visual features of their fingers with the target. We present a visual model for touch input that eliminates virtually all systematic effects on touch accuracy. (2) From each touch, we identify users biometrically by analyzing their fingerprints. Our prototype Fiberio integrates fingerprint scanning and a display into the same flat surface, solving a long-standing problem in human-computer interaction: secure authentication on touchscreens. Sensing 3D input and authenticating users upon touch allows Fiberio to implement a variety of applications that traditionally require the bulky setups of current 3D NUI systems. (3) To demonstrate the versatility of 3D reconstruction on larger touch surfaces, we present a high-resolution pressure-sensitive floor that resolves the texture of objects upon touch. Using the same principles as before, our system GravitySpace analyzes all imprints and identifies users based on their shoe soles, detects furniture, and enables accurate touch input using feet. By classifying all imprints, GravitySpace detects the users' body parts that are in contact with the floor and then reconstructs their 3D body poses using inverse kinematics. GravitySpace thus enables a range of applications for future 3D NUI systems based on a flat sensor, such as smart rooms in future homes. We conclude this dissertation by projecting into the future of mobile devices. Focusing on the mobility aspect of our work, we explore how NUI devices may one day augment users directly in the form of implanted devices.}, language = {en} } @phdthesis{Hu2006, author = {Hu, Ji}, title = {A virtual machine architecture for IT-security laboratories}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7818}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis discusses challenges in IT security education, points out a gap between e-learning and practical education, and presents a work to fill the gap. E-learning is a flexible and personalized alternative to traditional education. Nonetheless, existing e-learning systems for IT security education have difficulties in delivering hands-on experience because of the lack of proximity. Laboratory environments and practical exercises are indispensable instruction tools to IT security education, but security education in conventional computer laboratories poses particular problems such as immobility as well as high creation and maintenance costs. Hence, there is a need to effectively transform security laboratories and practical exercises into e-learning forms. In this thesis, we introduce the Tele-Lab IT-Security architecture that allows students not only to learn IT security principles, but also to gain hands-on security experience by exercises in an online laboratory environment. In this architecture, virtual machines are used to provide safe user work environments instead of real computers. Thus, traditional laboratory environments can be cloned onto the Internet by software, which increases accessibility to laboratory resources and greatly reduces investment and maintenance costs. Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to provide effective functionalities, reliability, security, and performance. The virtual machines with appropriate resource allocation, software installation, and system configurations are used to build lightweight security laboratories on a hosting computer. Reliability and availability of laboratory platforms are covered by a virtual machine management framework. This management framework provides necessary monitoring and administration services to detect and recover critical failures of virtual machines at run time. Considering the risk that virtual machines can be misused for compromising production networks, we present a security management solution to prevent the misuse of laboratory resources by security isolation at the system and network levels. This work is an attempt to bridge the gap between e-learning/tele-teaching and practical IT security education. It is not to substitute conventional teaching in laboratories but to add practical features to e-learning. This thesis demonstrates the possibility to implement hands-on security laboratories on the Internet reliably, securely, and economically.}, subject = {Computersicherheit}, language = {en} } @phdthesis{Huang2006, author = {Huang, Wanjun}, title = {Temporary binding for dynamic middleware construction and web services composition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7672}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {With increasing number of applications in Internet and mobile environments, distributed software systems are demanded to be more powerful and flexible, especially in terms of dynamism and security. This dissertation describes my work concerning three aspects: dynamic reconfiguration of component software, security control on middleware applications, and web services dynamic composition. Firstly, I proposed a technology named Routing Based Workflow (RBW) to model the execution and management of collaborative components and realize temporary binding for component instances. The temporary binding means component instances are temporarily loaded into a created execution environment to execute their functions, and then are released to their repository after executions. The temporary binding allows to create an idle execution environment for all collaborative components, on which the change operations can be immediately carried out. The changes on execution environment will result in a new collaboration of all involved components, and also greatly simplifies the classical issues arising from dynamic changes, such as consistency preserving etc. To demonstrate the feasibility of RBW, I created a dynamic secure middleware system - the Smart Data Server Version 3.0 (SDS3). In SDS3, an open source implementation of CORBA is adopted and modified as the communication infrastructure, and three secure components managed by RBW, are created to enhance the security on the access of deployed applications. SDS3 offers multi-level security control on its applications from strategy control to application-specific detail control. For the management by RBW, the strategy control of SDS3 applications could be dynamically changed by reorganizing the collaboration of the three secure components. In addition, I created the Dynamic Services Composer (DSC) based on Apache open source projects, Apache Axis and WSIF. In DSC, RBW is employed to model the interaction and collaboration of web services and to enable the dynamic changes on the flow structure of web services. Finally, overall performance tests were made to evaluate the efficiency of the developed RBW and SDS3. The results demonstrated that temporary binding of component instances makes slight impacts on the execution efficiency of components, and the blackout time arising from dynamic changes can be extremely reduced in any applications.}, subject = {Middleware}, language = {en} } @phdthesis{Ishebabi2010, author = {Ishebabi, Harold}, title = {Architecture synthesis for adaptive multiprocessor systems on chip}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41316}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis presents methods for automated synthesis of flexible chip multiprocessor systems from parallel programs targeted at FPGAs to exploit both task-level parallelism and architecture customization. Automated synthesis is necessitated by the complexity of the design space. A detailed description of the design space is provided in order to determine which parameters should be modeled to facilitate automated synthesis by optimizing a cost function, the emphasis being placed on inclusive modeling of parameters from application, architectural and physical subspaces, as well as their joint coverage in order to avoid pre-constraining the design space. Given a parallel program and a set of an IP library, the automated synthesis problem is to simultaneously (i) select processors (ii) map and schedule tasks to them, and (iii) select one or several networks for inter-task communications such that design constraints and optimization objectives are met. The research objective in this thesis is to find a suitable model for automated synthesis, and to evaluate methods of using the model for architectural optimizations. Our contributions are a holistic approach for the design of such systems, corresponding models to facilitate automated synthesis, evaluation of optimization methods using state of the art integer linear and answer set programming, as well as the development of synthesis heuristics to solve runtime challenges.}, language = {en} } @phdthesis{Jiang2007, author = {Jiang, Chunyan}, title = {Multi-visualization and hybrid segmentation approaches within telemedicine framework}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12829}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The innovation of information techniques has changed many aspects of our life. In health care field, we can obtain, manage and communicate high-quality large volumetric image data by computer integrated devices, to support medical care. In this dissertation I propose several promising methods that could assist physicians in processing, observing and communicating the image data. They are included in my three research aspects: telemedicine integration, medical image visualization and image segmentation. And these methods are also demonstrated by the demo software that I developed. One of my research point focuses on medical information storage standard in telemedicine, for example DICOM, which is the predominant standard for the storage and communication of medical images. I propose a novel 3D image data storage method, which was lacking in current DICOM standard. I also created a mechanism to make use of the non-standard or private DICOM files. In this thesis I present several rendering techniques on medical image visualization to offer different display manners, both 2D and 3D, for example, cut through data volume in arbitrary degree, rendering the surface shell of the data, and rendering the semi-transparent volume of the data. A hybrid segmentation approach, designed for semi-automated segmentation of radiological image, such as CT, MRI, etc, is proposed in this thesis to get the organ or interested area from the image. This approach takes advantage of the region-based method and boundary-based methods. Three steps compose the hybrid approach: the first step gets coarse segmentation by fuzzy affinity and generates homogeneity operator; the second step divides the image by Voronoi Diagram and reclassifies the regions by the operator to refine segmentation from the previous step; the third step handles vague boundary by level set model. Topics for future research are mentioned in the end, including new supplement for DICOM standard for segmentation information storage, visualization of multimodal image information, and improvement of the segmentation approach to higher dimension.}, language = {en} } @phdthesis{Kluth2011, author = {Kluth, Stephan}, title = {Quantitative modeling and analysis with FMC-QE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52987}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The modeling and evaluation calculus FMC-QE, the Fundamental Modeling Concepts for Quanti-tative Evaluation [1], extends the Fundamental Modeling Concepts (FMC) for performance modeling and prediction. In this new methodology, the hierarchical service requests are in the main focus, because they are the origin of every service provisioning process. Similar to physics, these service requests are a tuple of value and unit, which enables hierarchical service request transformations at the hierarchical borders and therefore the hierarchical modeling. Through reducing the model complexity of the models by decomposing the system in different hierarchical views, the distinction between operational and control states and the calculation of the performance values on the assumption of the steady state, FMC-QE has a scalable applica-bility on complex systems. According to FMC, the system is modeled in a 3-dimensional hierarchical representation space, where system performance parameters are described in three arbitrarily fine-grained hierarchi-cal bipartite diagrams. The hierarchical service request structures are modeled in Entity Relationship Diagrams. The static server structures, divided into logical and real servers, are de-scribed as Block Diagrams. The dynamic behavior and the control structures are specified as Petri Nets, more precisely Colored Time Augmented Petri Nets. From the structures and pa-rameters of the performance model, a hierarchical set of equations is derived. The calculation of the performance values is done on the assumption of stationary processes and is based on fundamental laws of the performance analysis: Little's Law and the Forced Traffic Flow Law. Little's Law is used within the different hierarchical levels (horizontal) and the Forced Traffic Flow Law is the key to the dependencies among the hierarchical levels (vertical). This calculation is suitable for complex models and allows a fast (re-)calculation of different performance scenarios in order to support development and configuration decisions. Within the Research Group Zorn at the Hasso Plattner Institute, the work is embedded in a broader research in the development of FMC-QE. While this work is concentrated on the theoretical background, description and definition of the methodology as well as the extension and validation of the applicability, other topics are in the development of an FMC-QE modeling and evaluation tool and the usage of FMC-QE in the design of an adaptive transport layer in order to fulfill Quality of Service and Service Level Agreements in volatile service based environments. This thesis contains a state-of-the-art, the description of FMC-QE as well as extensions of FMC-QE in representative general models and case studies. In the state-of-the-art part of the thesis in chapter 2, an overview on existing Queueing Theory and Time Augmented Petri Net models and other quantitative modeling and evaluation languages and methodologies is given. Also other hierarchical quantitative modeling frameworks will be considered. The description of FMC-QE in chapter 3 consists of a summary of the foundations of FMC-QE, basic definitions, the graphical notations, the FMC-QE Calculus and the modeling of open queueing networks as an introductory example. The extensions of FMC-QE in chapter 4 consist of the integration of the summation method in order to support the handling of closed networks and the modeling of multiclass and semaphore scenarios. Furthermore, FMC-QE is compared to other performance modeling and evaluation approaches. In the case study part in chapter 5, proof-of-concept examples, like the modeling of a service based search portal, a service based SAP NetWeaver application and the Axis2 Web service framework will be provided. Finally, conclusions are given by a summary of contributions and an outlook on future work in chapter 6. [1] Werner Zorn. FMC-QE - A New Approach in Quantitative Modeling. In Hamid R. Arabnia, editor, Procee-dings of the International Conference on Modeling, Simulation and Visualization Methods (MSV 2007) within WorldComp '07, pages 280 - 287, Las Vegas, NV, USA, June 2007. CSREA Press. ISBN 1-60132-029-9.}, language = {en} } @phdthesis{Konczak2007, author = {Konczak, Kathrin}, title = {Preferences in answer set programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12058}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm, having its roots in nonmonotonic reasoning, deductive databases, and logic programming with negation as failure. The basic idea of ASP is to represent a computational problem as a logic program whose answer sets correspond to solutions, and then to use an answer set solver for finding answer sets of the program. ASP is particularly suited for solving NP-complete search problems. Among these, we find applications to product configuration, diagnosis, and graph-theoretical problems, e.g. finding Hamiltonian cycles. On different lines of ASP research, many extensions of the basic formalism have been proposed. The most intensively studied one is the modelling of preferences in ASP. They constitute a natural and effective way of selecting preferred solutions among a plethora of solutions for a problem. For example, preferences have been successfully used for timetabling, auctioning, and product configuration. In this thesis, we concentrate on preferences within answer set programming. Among several formalisms and semantics for preference handling in ASP, we concentrate on ordered logic programs with the underlying D-, W-, and B-semantics. In this setting, preferences are defined among rules of a logic program. They select preferred answer sets among (standard) answer sets of the underlying logic program. Up to now, those preferred answer sets have been computed either via a compilation method or by meta-interpretation. Hence, the question comes up, whether and how preferences can be integrated into an existing ASP solver. To solve this question, we develop an operational graph-based framework for the computation of answer sets of logic programs. Then, we integrate preferences into this operational approach. We empirically observe that our integrative approach performs in most cases better than the compilation method or meta-interpretation. Another research issue in ASP are optimization methods that remove redundancies, as also found in database query optimizers. For these purposes, the rather recently suggested notion of strong equivalence for ASP can be used. If a program is strongly equivalent to a subprogram of itself, then one can always use the subprogram instead of the original program, a technique which serves as an effective optimization method. Up to now, strong equivalence has not been considered for logic programs with preferences. In this thesis, we tackle this issue and generalize the notion of strong equivalence to ordered logic programs. We give necessary and sufficient conditions for the strong equivalence of two ordered logic programs. Furthermore, we provide program transformations for ordered logic programs and show in how far preferences can be simplified. Finally, we present two new applications for preferences within answer set programming. First, we define new procedures for group decision making, which we apply to the problem of scheduling a group meeting. As a second new application, we reconstruct a linguistic problem appearing in German dialects within ASP. Regarding linguistic studies, there is an ongoing debate about how unique the rule systems of language are in human cognition. The reconstruction of grammatical regularities with tools from computer science has consequences for this debate: if grammars can be modelled this way, then they share core properties with other non-linguistic rule systems.}, language = {en} } @phdthesis{Kyprianidis2013, author = {Kyprianidis, Jan Eric}, title = {Structure adaptive stylization of images and video}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64104}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the early days of computer graphics, research was mainly driven by the goal to create realistic synthetic imagery. By contrast, non-photorealistic computer graphics, established as its own branch of computer graphics in the early 1990s, is mainly motivated by concepts and principles found in traditional art forms, such as painting, illustration, and graphic design, and it investigates concepts and techniques that abstract from reality using expressive, stylized, or illustrative rendering techniques. This thesis focuses on the artistic stylization of two-dimensional content and presents several novel automatic techniques for the creation of simplified stylistic illustrations from color images, video, and 3D renderings. Primary innovation of these novel techniques is that they utilize the smooth structure tensor as a simple and efficient way to obtain information about the local structure of an image. More specifically, this thesis contributes to knowledge in this field in the following ways. First, a comprehensive review of the structure tensor is provided. In particular, different methods for integrating the minor eigenvector field of the smoothed structure tensor are developed, and the superiority of the smoothed structure tensor over the popular edge tangent flow is demonstrated. Second, separable implementations of the popular bilateral and difference of Gaussians filters that adapt to the local structure are presented. These filters avoid artifacts while being computationally highly efficient. Taken together, both provide an effective way to create a cartoon-style effect. Third, a generalization of the Kuwahara filter is presented that avoids artifacts by adapting the shape, scale, and orientation of the filter to the local structure. This causes directional image features to be better preserved and emphasized, resulting in overall sharper edges and a more feature-abiding painterly effect. In addition to the single-scale variant, a multi-scale variant is presented, which is capable of performing a highly aggressive abstraction. Fourth, a technique that builds upon the idea of combining flow-guided smoothing with shock filtering is presented, allowing for an aggressive exaggeration and an emphasis of directional image features. All presented techniques are suitable for temporally coherent per-frame filtering of video or dynamic 3D renderings, without requiring expensive extra processing, such as optical flow. Moreover, they can be efficiently implemented to process content in real-time on a GPU.}, language = {en} } @article{LaiDavisEickelmannetal.2015, author = {Lai, Kwok-Wing and Davis, Niki and Eickelmann, Birgit and Erstad, Ola and Fisser, Petra and Gibson, David and Khaddage, Ferial and Knezek, Gerald and Webb, Mary}, title = {Tackling Educational Challenges in a Digitally Networked World}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82997}, pages = {415 -- 423}, year = {2015}, language = {en} } @misc{LamprechtMargariaSteffen2009, author = {Lamprecht, Anna-Lena and Margaria, Tiziana and Steffen, Bernhard}, title = {Bio-jETI : a framework for semantics-based service composition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45066}, year = {2009}, abstract = {Background: The development of bioinformatics databases, algorithms, and tools throughout the last years has lead to a highly distributedworld of bioinformatics services. Without adequatemanagement and development support, in silico researchers are hardly able to exploit the potential of building complex, specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping individual data and services with machine-processable meta-information, while workflow systems support the construction of service compositions. However, even in this combination, in silico researchers currently would have to deal manually with the service interfaces, the adequacy of the semantic annotations, type incompatibilities, and the consistency of service compositions. Results: In this paper, we demonstrate by means of two examples how Semantic Web technology together with an adequate domain modelling frees in silico researchers from dealing with interfaces, types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to complex services without worrying about details of their interfaces or about type mismatches of the composition. These issues are taken care of at the semantic level by Bio-jETI's model checking and synthesis features. Whenever possible, they automatically resolve type mismatches in the considered service setting. Otherwise, they graphically indicate impossible/incorrect service combinations. In the latter case, the workflow developermay either modify his service composition using semantically similar services, or ask for help in developing the missing mediator that correctly bridges the detected type gap. Newly developed mediators should then be adequately annotated semantically, and added to the service library for later reuse in similar situations. Conclusion: We show the power of semantic annotations in an adequately modelled and semantically enabled domain setting. Using model checking and synthesis methods, users may orchestrate complex processes from a wealth of heterogeneous services without worrying about interfaces and (type) consistency. The success of this method strongly depends on a careful semantic annotation of the provided services and on its consequent exploitation for analysis, validation, and synthesis. We are convinced that these annotations will become standard, as they will become preconditions for the success and widespread use of (preferred) services in the Semantic Web}, language = {en} } @phdthesis{Lanfermann2002, author = {Lanfermann, Gerd}, title = {Nomadic migration : a service environment for autonomic computing on the Grid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000773}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {In den vergangenen Jahren ist es zu einer dramatischen Vervielfachung der verf{\"u}gbaren Rechenzeit gekommen. Diese 'Grid Ressourcen' stehen jedoch nicht als kontinuierlicher Strom zur Verf{\"u}gung, sondern sind {\"u}ber verschiedene Maschinentypen, Plattformen und Betriebssysteme verteilt, die jeweils durch Netzwerke mit fluktuierender Bandbreite verbunden sind. Es wird f{\"u}r Wissenschaftler zunehmend schwieriger, die verf{\"u}gbaren Ressourcen f{\"u}r ihre Anwendungen zu nutzen. Wir glauben, dass intelligente, selbstbestimmende Applikationen in der Lage sein sollten, ihre Ressourcen in einer dynamischen und heterogenen Umgebung selbst zu w{\"a}hlen: Migrierende Applikationen suchen eine neue Ressource, wenn die alte aufgebraucht ist. 'Spawning'-Anwendungen lassen Algorithmen auf externen Maschinen laufen, um die Hauptanwendung zu beschleunigen. Applikationen werden neu gestartet, sobald ein Absturz endeckt wird. Alle diese Verfahren k{\"o}nnen ohne menschliche Interaktion erfolgen. Eine verteilte Rechenumgebung besitzt eine nat{\"u}rliche Unverl{\"a}sslichkeit. Jede Applikation, die mit einer solchen Umgebung interagiert, muss auf die gest{\"o}rten Komponenten reagieren k{\"o}nnen: schlechte Netzwerkverbindung, abst{\"u}rzende Maschinen, fehlerhafte Software. Wir konstruieren eine verl{\"a}ssliche Serviceinfrastruktur, indem wir der Serviceumgebung eine 'Peer-to-Peer'-Topology aufpr{\"a}gen. Diese "Grid Peer Service" Infrastruktur beinhaltet Services wie Migration und Spawning, als auch Services zum Starten von Applikationen, zur Datei{\"u}bertragung und Auswahl von Rechenressourcen. Sie benutzt existierende Gridtechnologie wo immer m{\"o}glich, um ihre Aufgabe durchzuf{\"u}hren. Ein Applikations-Information- Server arbeitet als generische Registratur f{\"u}r alle Teilnehmer in der Serviceumgebung. Die Serviceumgebung, die wir entwickelt haben, erlaubt es Applikationen z.B. eine Relokationsanfrage an einen Migrationsserver zu stellen. Der Server sucht einen neuen Computer, basierend auf den {\"u}bermittelten Ressourcen-Anforderungen. Er transferiert den Statusfile des Applikation zu der neuen Maschine und startet die Applikation neu. Obwohl das umgebende Ressourcensubstrat nicht kontinuierlich ist, k{\"o}nnen wir kontinuierliche Berechnungen auf Grids ausf{\"u}hren, indem wir die Applikation migrieren. Wir zeigen mit realistischen Beispielen, wie sich z.B. ein traditionelles Genom-Analyse-Programm leicht modifizieren l{\"a}sst, um selbstbestimmte Migrationen in dieser Serviceumgebung durchzuf{\"u}hren.}, subject = {Peer-to-Peer-Netz ; GRID computing ; Zuverl{\"a}ssigkeit ; Web Services ; Betriebsmittelverwaltung ; Migration}, language = {en} } @phdthesis{Linckels2008, author = {Linckels, Serge}, title = {An e-librarian service : supporting explorative learning by a description logics based semantic retrieval tool}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17452}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Although educational content in electronic form is increasing dramatically, its usage in an educational environment is poor, mainly due to the fact that there is too much of (unreliable) redundant, and not relevant information. Finding appropriate answers is a rather difficult task being reliant on the user filtering of the pertinent information from the noise. Turning knowledge bases like the online tele-TASK archive into useful educational resources requires identifying correct, reliable, and "machine-understandable" information, as well as developing simple but efficient search tools with the ability to reason over this information. Our vision is to create an E-Librarian Service, which is able to retrieve multimedia resources from a knowledge base in a more efficient way than by browsing through an index, or by using a simple keyword search. In our E-Librarian Service, the user can enter his question in a very simple and human way; in natural language (NL). Our premise is that more pertinent results would be retrieved if the search engine understood the sense of the user's query. The returned results are then logical consequences of an inference rather than of keyword matchings. Our E-Librarian Service does not return the answer to the user's question, but it retrieves the most pertinent document(s), in which the user finds the answer to his/her question. Among all the documents that have some common information with the user query, our E-Librarian Service identifies the most pertinent match(es), keeping in mind that the user expects an exhaustive answer while preferring a concise answer with only little or no information overhead. Also, our E-Librarian Service always proposes a solution to the user, even if the system concludes that there is no exhaustive answer. Our E-Librarian Service was implemented prototypically in three different educational tools. A first prototype is CHESt (Computer History Expert System); it has a knowledge base with 300 multimedia clips that cover the main events in computer history. A second prototype is MatES (Mathematics Expert System); it has a knowledge base with 115 clips that cover the topic of fractions in mathematics for secondary school w.r.t. the official school programme. All clips were recorded mainly by pupils. The third and most advanced prototype is the "Lecture Butler's E-Librarain Service"; it has a Web service interface to respect a service oriented architecture (SOA), and was developed in the context of the Web-University project at the Hasso-Plattner-Institute (HPI). Two major experiments in an educational environment - at the Lyc{\´e}e Technique Esch/Alzette in Luxembourg - were made to test the pertinence and reliability of our E-Librarian Service as a complement to traditional courses. The first experiment (in 2005) was made with CHESt in different classes, and covered a single lesson. The second experiment (in 2006) covered a period of 6 weeks of intensive use of MatES in one class. There was no classical mathematics lesson where the teacher gave explanations, but the students had to learn in an autonomous and exploratory way. They had to ask questions to the E-Librarian Service just the way they would if there was a human teacher.}, subject = {Terminologische Logik}, language = {en} } @phdthesis{Lindauer2014, author = {Lindauer, T. Marius}, title = {Algorithm selection, scheduling and configuration of Boolean constraint solvers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71260}, school = {Universit{\"a}t Potsdam}, pages = {ii, 130}, year = {2014}, abstract = {Boolean constraint solving technology has made tremendous progress over the last decade, leading to industrial-strength solvers, for example, in the areas of answer set programming (ASP), the constraint satisfaction problem (CSP), propositional satisfiability (SAT) and satisfiability of quantified Boolean formulas (QBF). However, in all these areas, there exist multiple solving strategies that work well on different applications; no strategy dominates all other strategies. Therefore, no individual solver shows robust state-of-the-art performance in all kinds of applications. Additionally, the question arises how to choose a well-performing solving strategy for a given application; this is a challenging question even for solver and domain experts. One way to address this issue is the use of portfolio solvers, that is, a set of different solvers or solver configurations. We present three new automatic portfolio methods: (i) automatic construction of parallel portfolio solvers (ACPP) via algorithm configuration,(ii) solving the \$NP\$-hard problem of finding effective algorithm schedules with Answer Set Programming (aspeed), and (iii) a flexible algorithm selection framework (claspfolio2) allowing for fair comparison of different selection approaches. All three methods show improved performance and robustness in comparison to individual solvers on heterogeneous instance sets from many different applications. Since parallel solvers are important to effectively solve hard problems on parallel computation systems (e.g., multi-core processors), we extend all three approaches to be effectively applicable in parallel settings. We conducted extensive experimental studies different instance sets from ASP, CSP, MAXSAT, Operation Research (OR), SAT and QBF that indicate an improvement in the state-of-the-art solving heterogeneous instance sets. Last but not least, from our experimental studies, we deduce practical advice regarding the question when to apply which of our methods.}, language = {en} } @phdthesis{Mahr2012, author = {Mahr, Philipp}, title = {Resource efficient communication in network-based reconfigurable on-chip systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59914}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The constantly growing capacity of reconfigurable devices allows simultaneous execution of complex applications on those devices. The mere diversity of applications deems it impossible to design an interconnection network matching the requirements of every possible application perfectly, leading to suboptimal performance in many cases. However, the architecture of the interconnection network is not the only aspect affecting performance of communication. The resource manager places applications on the device and therefore influences latency between communicating partners and overall network load. Communication protocols affect performance by introducing data and processing overhead putting higher load on the network and increasing resource demand. Approaching communication holistically not only considers the architecture of the interconnect, but communication-aware resource management, communication protocols and resource usage just as well. Incorporation of different parts of a reconfigurable system during design- and runtime and optimizing them with respect to communication demand results in more resource efficient communication. Extensive evaluation shows enhanced performance and flexibility, if communication on reconfigurable devices is regarded in a holistic fashion.}, language = {en} } @phdthesis{Menzel2011, author = {Menzel, Michael}, title = {Model-driven security in service-oriented architectures : leveraging security patterns to transform high-level security requirements to technical policies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59058}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Service-oriented Architectures (SOA) facilitate the provision and orchestration of business services to enable a faster adoption to changing business demands. Web Services provide a technical foundation to implement this paradigm on the basis of XML-messaging. However, the enhanced flexibility of message-based systems comes along with new threats and risks. To face these issues, a variety of security mechanisms and approaches is supported by the Web Service specifications. The usage of these security mechanisms and protocols is configured by stating security requirements in security policies. However, security policy languages for SOA are complex and difficult to create due to the expressiveness of these languages. To facilitate and simplify the creation of security policies, this thesis presents a model-driven approach that enables the generation of complex security policies on the basis of simple security intentions. SOA architects can specify these intentions in system design models and are not required to deal with complex technical security concepts. The approach introduced in this thesis enables the enhancement of any system design modelling languages - for example FMC or BPMN - with security modelling elements. The syntax, semantics, and notion of these elements is defined by our security modelling language SecureSOA. The metamodel of this language provides extension points to enable the integration into system design modelling languages. In particular, this thesis demonstrates the enhancement of FMC block diagrams with SecureSOA. To enable the model-driven generation of security policies, a domain-independent policy model is introduced in this thesis. This model provides an abstraction layer for security policies. Mappings are used to perform the transformation from our model to security policy languages. However, expert knowledge is required to generate instances of this model on the basis of simple security intentions. Appropriate security mechanisms, protocols and options must be chosen and combined to fulfil these security intentions. In this thesis, a formalised system of security patterns is used to represent this knowledge and to enable an automated transformation process. Moreover, a domain-specific language is introduced to state security patterns in an accessible way. On the basis of this language, a system of security configuration patterns is provided to transform security intentions related to data protection and identity management. The formal semantics of the security pattern language enable the verification of the transformation process introduced in this thesis and prove the correctness of the pattern application. Finally, our SOA Security LAB is presented that demonstrates the application of our model-driven approach to facilitate a dynamic creation, configuration, and execution of secure Web Service-based composed applications.}, language = {en} } @phdthesis{Middelanis2023, author = {Middelanis, Robin}, title = {Global response to local extremes—a storyline approach on economic loss propagation from weather extremes}, doi = {10.25932/publishup-61112}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611127}, school = {Universit{\"a}t Potsdam}, pages = {vii, 237}, year = {2023}, abstract = {Due to anthropogenic greenhouse gas emissions, Earth's average surface temperature is steadily increasing. As a consequence, many weather extremes are likely to become more frequent and intense. This poses a threat to natural and human systems, with local impacts capable of destroying exposed assets and infrastructure, and disrupting economic and societal activity. Yet, these effects are not locally confined to the directly affected regions, as they can trigger indirect economic repercussions through loss propagation along supply chains. As a result, local extremes yield a potentially global economic response. To build economic resilience and design effective adaptation measures that mitigate adverse socio-economic impacts of ongoing climate change, it is crucial to gain a comprehensive understanding of indirect impacts and the underlying economic mechanisms. Presenting six articles in this thesis, I contribute towards this understanding. To this end, I expand on local impacts under current and future climate, the resulting global economic response, as well as the methods and tools to analyze this response. Starting with a traditional assessment of weather extremes under climate change, the first article investigates extreme snowfall in the Northern Hemisphere until the end of the century. Analyzing an ensemble of global climate model projections reveals an increase of the most extreme snowfall, while mean snowfall decreases. Assessing repercussions beyond local impacts, I employ numerical simulations to compute indirect economic effects from weather extremes with the numerical agent-based shock propagation model Acclimate. This model is used in conjunction with the recently emerged storyline framework, which involves analyzing the impacts of a particular reference extreme event and comparing them to impacts in plausible counterfactual scenarios under various climate or socio-economic conditions. Using this approach, I introduce three primary storylines that shed light on the complex mechanisms underlying economic loss propagation. In the second and third articles of this thesis, I analyze storylines for the historical Hurricanes Sandy (2012) and Harvey (2017) in the USA. For this, I first estimate local economic output losses and then simulate the resulting global economic response with Acclimate. The storyline for Hurricane Sandy thereby focuses on global consumption price anomalies and the resulting changes in consumption. I find that the local economic disruption leads to a global wave-like economic price ripple, with upstream effects propagating in the supplier direction and downstream effects in the buyer direction. Initially, an upstream demand reduction causes consumption price decreases, followed by a downstream supply shortage and increasing prices, before the anomalies decay in a normalization phase. A dominant upstream or downstream effect leads to net consumption gains or losses of a region, respectively. Moreover, I demonstrate that a longer direct economic shock intensifies the downstream effect for many regions, leading to an overall consumption loss. The third article of my thesis builds upon the developed loss estimation method by incorporating projections to future global warming levels. I use these projections to explore how the global production response to Hurricane Harvey would change under further increased global warming. The results show that, while the USA is able to nationally offset direct losses in the reference configuration, other countries have to compensate for increasing shares of counterfactual future losses. This compensation is mainly achieved by large exporting countries, but gradually shifts towards smaller regions. These findings not only highlight the economy's ability to flexibly mitigate disaster losses to a certain extent, but also reveal the vulnerability and economic disadvantage of regions that are exposed to extreme weather events. The storyline in the fourth article of my thesis investigates the interaction between global economic stress and the propagation of losses from weather extremes. I examine indirect impacts of weather extremes — tropical cyclones, heat stress, and river floods — worldwide under two different economic conditions: an unstressed economy and a globally stressed economy, as seen during the Covid-19 pandemic. I demonstrate that the adverse effects of weather extremes on global consumption are strongly amplified when the economy is under stress. Specifically, consumption losses in the USA and China double and triple, respectively, due to the global economy's decreased capacity for disaster loss compensation. An aggravated scarcity intensifies the price response, causing consumption losses to increase. Advancing on the methods and tools used here, the final two articles in my thesis extend the agent-based model Acclimate and formalize the storyline approach. With the model extension described in the fifth article, regional consumers make rational choices on the goods bought such that their utility is maximized under a constrained budget. In an out-of-equilibrium economy, these rational consumers are shown to temporarily increase consumption of certain goods in spite of rising prices. The sixth article of my thesis proposes a formalization of the storyline framework, drawing on multiple studies including storylines presented in this thesis. The proposed guideline defines eight central elements that can be used to construct a storyline. Overall, this thesis contributes towards a better understanding of economic repercussions of weather extremes. It achieves this by providing assessments of local direct impacts, highlighting mechanisms and impacts of loss propagation, and advancing on methods and tools used.}, language = {en} } @phdthesis{Mueller2016, author = {Mueller, Stefanie}, title = {Interacting with personal fabrication devices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100908}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 108}, year = {2016}, abstract = {Personal fabrication tools, such as 3D printers, are on the way of enabling a future in which non-technical users will be able to create custom objects. However, while the hardware is there, the current interaction model behind existing design tools is not suitable for non-technical users. Today, 3D printers are operated by fabricating the object in one go, which tends to take overnight due to the slow 3D printing technology. Consequently, the current interaction model requires users to think carefully before printing as every mistake may imply another overnight print. Planning every step ahead, however, is not feasible for non-technical users as they lack the experience to reason about the consequences of their design decisions. In this dissertation, we propose changing the interaction model around personal fabrication tools to better serve this user group. We draw inspiration from personal computing and argue that the evolution of personal fabrication may resemble the evolution of personal computing: Computing started with machines that executed a program in one go before returning the result to the user. By decreasing the interaction unit to single requests, turn-taking systems such as the command line evolved, which provided users with feedback after every input. Finally, with the introduction of direct-manipulation interfaces, users continuously interacted with a program receiving feedback about every action in real-time. In this dissertation, we explore whether these interaction concepts can be applied to personal fabrication as well. We start with fabricating an object in one go and investigate how to tighten the feedback-cycle on an object-level: We contribute a method called low-fidelity fabrication, which saves up to 90\% fabrication time by creating objects as fast low-fidelity previews, which are sufficient to evaluate key design aspects. Depending on what is currently being tested, we propose different conversions that enable users to focus on different parts: faBrickator allows for a modular design in the early stages of prototyping; when users move on WirePrint allows quickly testing an object's shape, while Platener allows testing an object's technical function. We present an interactive editor for each technique and explain the underlying conversion algorithms. By interacting on smaller units, such as a single element of an object, we explore what it means to transition from systems that fabricate objects in one go to turn-taking systems. We start with a 2D system called constructable: Users draw with a laser pointer onto the workpiece inside a laser cutter. The drawing is captured with an overhead camera. As soon as the the user finishes drawing an element, such as a line, the constructable system beautifies the path and cuts it--resulting in physical output after every editing step. We extend constructable towards 3D editing by developing a novel laser-cutting technique for 3D objects called LaserOrigami that works by heating up the workpiece with the defocused laser until the material becomes compliant and bends down under gravity. While constructable and LaserOrigami allow for fast physical feedback, the interaction is still best described as turn-taking since it consists of two discrete steps: users first create an input and afterwards the system provides physical output. By decreasing the interaction unit even further to a single feature, we can achieve real-time physical feedback: Input by the user and output by the fabrication device are so tightly coupled that no visible lag exists. This allows us to explore what it means to transition from turn-taking interfaces, which only allow exploring one option at a time, to direct manipulation interfaces with real-time physical feedback, which allow users to explore the entire space of options continuously with a single interaction. We present a system called FormFab, which allows for such direct control. FormFab is based on the same principle as LaserOrigami: It uses a workpiece that when warmed up becomes compliant and can be reshaped. However, FormFab achieves the reshaping not based on gravity, but through a pneumatic system that users can control interactively. As users interact, they see the shape change in real-time. We conclude this dissertation by extrapolating the current evolution into a future in which large numbers of people use the new technology to create objects. We see two additional challenges on the horizon: sustainability and intellectual property. We investigate sustainability by demonstrating how to print less and instead patch physical objects. We explore questions around intellectual property with a system called Scotty that transfers objects without creating duplicates, thereby preserving the designer's copyright.}, language = {en} } @phdthesis{Ostrowski2018, author = {Ostrowski, Max}, title = {Modern constraint answer set solving}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407799}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Answer Set Programming (ASP) is a declarative problem solving approach, combining a rich yet simple modeling language with high-performance solving capabilities. Although this has already resulted in various applications, certain aspects of such applications are more naturally modeled using variables over finite domains, for accounting for resources, fine timings, coordinates, or functions. Our goal is thus to extend ASP with constraints over integers while preserving its declarative nature. This allows for fast prototyping and elaboration tolerant problem descriptions of resource related applications. The resulting paradigm is called Constraint Answer Set Programming (CASP). We present three different approaches for solving CASP problems. The first one, a lazy, modular approach combines an ASP solver with an external system for handling constraints. This approach has the advantage that two state of the art technologies work hand in hand to solve the problem, each concentrating on its part of the problem. The drawback is that inter-constraint dependencies cannot be communicated back to the ASP solver, impeding its learning algorithm. The second approach translates all constraints to ASP. Using the appropriate encoding techniques, this results in a very fast, monolithic system. Unfortunately, due to the large, explicit representation of constraints and variables, translation techniques are restricted to small and mid-sized domains. The third approach merges the lazy and the translational approach, combining the strength of both while removing their weaknesses. To this end, we enhance the dedicated learning techniques of an ASP solver with the inferences of the translating approach in a lazy way. That is, the important knowledge is only made explicit when needed. By using state of the art techniques from neighboring fields, we provide ways to tackle real world, industrial size problems. By extending CASP to reactive solving, we open up new application areas such as online planning with continuous domains and durations.}, language = {en} } @phdthesis{Polyvyanyy2012, author = {Polyvyanyy, Artem}, title = {Structuring process models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59024}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {One can fairly adopt the ideas of Donald E. Knuth to conclude that process modeling is both a science and an art. Process modeling does have an aesthetic sense. Similar to composing an opera or writing a novel, process modeling is carried out by humans who undergo creative practices when engineering a process model. Therefore, the very same process can be modeled in a myriad number of ways. Once modeled, processes can be analyzed by employing scientific methods. Usually, process models are formalized as directed graphs, with nodes representing tasks and decisions, and directed arcs describing temporal constraints between the nodes. Common process definition languages, such as Business Process Model and Notation (BPMN) and Event-driven Process Chain (EPC) allow process analysts to define models with arbitrary complex topologies. The absence of structural constraints supports creativity and productivity, as there is no need to force ideas into a limited amount of available structural patterns. Nevertheless, it is often preferable that models follow certain structural rules. A well-known structural property of process models is (well-)structuredness. A process model is (well-)structured if and only if every node with multiple outgoing arcs (a split) has a corresponding node with multiple incoming arcs (a join), and vice versa, such that the set of nodes between the split and the join induces a single-entry-single-exit (SESE) region; otherwise the process model is unstructured. The motivations for well-structured process models are manifold: (i) Well-structured process models are easier to layout for visual representation as their formalizations are planar graphs. (ii) Well-structured process models are easier to comprehend by humans. (iii) Well-structured process models tend to have fewer errors than unstructured ones and it is less probable to introduce new errors when modifying a well-structured process model. (iv) Well-structured process models are better suited for analysis with many existing formal techniques applicable only for well-structured process models. (v) Well-structured process models are better suited for efficient execution and optimization, e.g., when discovering independent regions of a process model that can be executed concurrently. Consequently, there are process modeling languages that encourage well-structured modeling, e.g., Business Process Execution Language (BPEL) and ADEPT. However, the well-structured process modeling implies some limitations: (i) There exist processes that cannot be formalized as well-structured process models. (ii) There exist processes that when formalized as well-structured process models require a considerable duplication of modeling constructs. Rather than expecting well-structured modeling from start, we advocate for the absence of structural constraints when modeling. Afterwards, automated methods can suggest, upon request and whenever possible, alternative formalizations that are "better" structured, preferably well-structured. In this thesis, we study the problem of automatically transforming process models into equivalent well-structured models. The developed transformations are performed under a strong notion of behavioral equivalence which preserves concurrency. The findings are implemented in a tool, which is publicly available.}, language = {en} } @phdthesis{Prasse2016, author = {Prasse, Paul}, title = {Pattern recognition for computer security}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100251}, school = {Universit{\"a}t Potsdam}, pages = {VI, 75}, year = {2016}, abstract = {Computer Security deals with the detection and mitigation of threats to computer networks, data, and computing hardware. This thesis addresses the following two computer security problems: email spam campaign and malware detection. Email spam campaigns can easily be generated using popular dissemination tools by specifying simple grammars that serve as message templates. A grammar is disseminated to nodes of a bot net, the nodes create messages by instantiating the grammar at random. Email spam campaigns can encompass huge data volumes and therefore pose a threat to the stability of the infrastructure of email service providers that have to store them. Malware -software that serves a malicious purpose- is affecting web servers, client computers via active content, and client computers through executable files. Without the help of malware detection systems it would be easy for malware creators to collect sensitive information or to infiltrate computers. The detection of threats -such as email-spam messages, phishing messages, or malware- is an adversarial and therefore intrinsically difficult problem. Threats vary greatly and evolve over time. The detection of threats based on manually-designed rules is therefore difficult and requires a constant engineering effort. Machine-learning is a research area that revolves around the analysis of data and the discovery of patterns that describe aspects of the data. Discriminative learning methods extract prediction models from data that are optimized to predict a target attribute as accurately as possible. Machine-learning methods hold the promise of automatically identifying patterns that robustly and accurately detect threats. This thesis focuses on the design and analysis of discriminative learning methods for the two computer-security problems under investigation: email-campaign and malware detection. The first part of this thesis addresses email-campaign detection. We focus on regular expressions as a syntactic framework, because regular expressions are intuitively comprehensible by security engineers and administrators, and they can be applied as a detection mechanism in an extremely efficient manner. In this setting, a prediction model is provided with exemplary messages from an email-spam campaign. The prediction model has to generate a regular expression that reveals the syntactic pattern that underlies the entire campaign, and that a security engineers finds comprehensible and feels confident enough to use the expression to blacklist further messages at the email server. We model this problem as two-stage learning problem with structured input and output spaces which can be solved using standard cutting plane methods. Therefore we develop an appropriate loss function, and derive a decoder for the resulting optimization problem. The second part of this thesis deals with the problem of predicting whether a given JavaScript or PHP file is malicious or benign. Recent malware analysis techniques use static or dynamic features, or both. In fully dynamic analysis, the software or script is executed and observed for malicious behavior in a sandbox environment. By contrast, static analysis is based on features that can be extracted directly from the program file. In order to bypass static detection mechanisms, code obfuscation techniques are used to spread a malicious program file in many different syntactic variants. Deobfuscating the code before applying a static classifier can be subjected to mostly static code analysis and can overcome the problem of obfuscated malicious code, but on the other hand increases the computational costs of malware detection by an order of magnitude. In this thesis we present a cascaded architecture in which a classifier first performs a static analysis of the original code and -based on the outcome of this first classification step- the code may be deobfuscated and classified again. We explore several types of features including token \$n\$-grams, orthogonal sparse bigrams, subroutine-hashings, and syntax-tree features and study the robustness of detection methods and feature types against the evolution of malware over time. The developed tool scans very large file collections quickly and accurately. Each model is evaluated on real-world data and compared to reference methods. Our approach of inferring regular expressions to filter emails belonging to an email spam campaigns leads to models with a high true-positive rate at a very low false-positive rate that is an order of magnitude lower than that of a commercial content-based filter. Our presented system -REx-SVMshort- is being used by a commercial email service provider and complements content-based and IP-address based filtering. Our cascaded malware detection system is evaluated on a high-quality data set of almost 400,000 conspicuous PHP files and a collection of more than 1,00,000 JavaScript files. From our case study we can conclude that our system can quickly and accurately process large data collections at a low false-positive rate.}, language = {en} } @misc{PrasseIversenLienhardetal.2022, author = {Prasse, Paul and Iversen, Pascal and Lienhard, Matthias and Thedinga, Kristina and Herwig, Ralf and Scheffer, Tobias}, title = {Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-57734}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577341}, pages = {1 -- 14}, year = {2022}, abstract = {Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models' accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.}, language = {en} } @phdthesis{Prohaska2007, author = {Prohaska, Steffen}, title = {Skeleton-based visualization of massive voxel objects with network-like architecture}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14888}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work introduces novel internal and external memory algorithms for computing voxel skeletons of massive voxel objects with complex network-like architecture and for converting these voxel skeletons to piecewise linear geometry, that is triangle meshes and piecewise straight lines. The presented techniques help to tackle the challenge of visualizing and analyzing 3d images of increasing size and complexity, which are becoming more and more important in, for example, biological and medical research. Section 2.3.1 contributes to the theoretical foundations of thinning algorithms with a discussion of homotopic thinning in the grid cell model. The grid cell model explicitly represents a cell complex built of faces, edges, and vertices shared between voxels. A characterization of pairs of cells to be deleted is much simpler than characterizations of simple voxels were before. The grid cell model resolves topologically unclear voxel configurations at junctions and locked voxel configurations causing, for example, interior voxels in sets of non-simple voxels. A general conclusion is that the grid cell model is superior to indecomposable voxels for algorithms that need detailed control of topology. Section 2.3.2 introduces a noise-insensitive measure based on the geodesic distance along the boundary to compute two-dimensional skeletons. The measure is able to retain thin object structures if they are geometrically important while ignoring noise on the object's boundary. This combination of properties is not known of other measures. The measure is also used to guide erosion in a thinning process from the boundary towards lines centered within plate-like structures. Geodesic distance based quantities seem to be well suited to robustly identify one- and two-dimensional skeletons. Chapter 6 applies the method to visualization of bone micro-architecture. Chapter 3 describes a novel geometry generation scheme for representing voxel skeletons, which retracts voxel skeletons to piecewise linear geometry per dual cube. The generated triangle meshes and graphs provide a link to geometry processing and efficient rendering of voxel skeletons. The scheme creates non-closed surfaces with boundaries, which contain fewer triangles than a representation of voxel skeletons using closed surfaces like small cubes or iso-surfaces. A conclusion is that thinking specifically about voxel skeleton configurations instead of generic voxel configurations helps to deal with the topological implications. The geometry generation is one foundation of the applications presented in Chapter 6. Chapter 5 presents a novel external memory algorithm for distance ordered homotopic thinning. The presented method extends known algorithms for computing chamfer distance transformations and thinning to execute I/O-efficiently when input is larger than the available main memory. The applied block-wise decomposition schemes are quite simple. Yet it was necessary to carefully analyze effects of block boundaries to devise globally correct external memory variants of known algorithms. In general, doing so is superior to naive block-wise processing ignoring boundary effects. Chapter 6 applies the algorithms in a novel method based on confocal microscopy for quantitative study of micro-vascular networks in the field of microcirculation.}, language = {en} } @phdthesis{Przybylla2018, author = {Przybylla, Mareen}, title = {From Embedded Systems to Physical Computing: Challenges of the "Digital World" in Secondary Computer Science Education}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418339}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 277}, year = {2018}, abstract = {Physical computing covers the design and realization of interactive objects and installations and allows learners to develop concrete, tangible products of the real world, which arise from their imagination. This can be used in computer science education to provide learners with interesting and motivating access to the different topic areas of the subject in constructionist and creative learning environments. However, if at all, physical computing has so far mostly been taught in afternoon clubs or other extracurricular settings. Thus, for the majority of students so far there are no opportunities to design and create their own interactive objects in regular school lessons. Despite its increasing popularity also for schools, the topic has not yet been clearly and sufficiently characterized in the context of computer science education. The aim of this doctoral thesis therefore is to clarify physical computing from the perspective of computer science education and to adequately prepare the topic both content-wise and methodologically for secondary school teaching. For this purpose, teaching examples, activities, materials and guidelines for classroom use are developed, implemented and evaluated in schools. In the theoretical part of the thesis, first the topic is examined from a technical point of view. A structured literature analysis shows that basic concepts used in physical computing can be derived from embedded systems, which are the core of a large field of different application areas and disciplines. Typical methods of physical computing in professional settings are analyzed and, from an educational perspective, elements suitable for computer science teaching in secondary schools are extracted, e. g. tinkering and prototyping. The investigation and classification of suitable tools for school teaching show that microcontrollers and mini computers, often with extensions that greatly facilitate the handling of additional components, are particularly attractive tools for secondary education. Considering the perspectives of science, teachers, students and society, in addition to general design principles, exemplary teaching approaches for school education and suitable learning materials are developed and the design, production and evaluation of a physical computing construction kit suitable for teaching is described. In the practical part of this thesis, with "My Interactive Garden", an exemplary approach to integrate physical computing in computer science teaching is tested and evaluated in different courses and refined based on the findings in a design-based research approach. In a series of workshops on physical computing, which is based on a concept for constructionist professional development that is developed specifically for this purpose, teachers are empowered and encouraged to develop and conduct physical computing lessons suitable for their particular classroom settings. Based on their in-class experiences, a process model of physical computing teaching is derived. Interviews with those teachers illustrate that benefits of physical computing, including the tangibility of crafted objects and creativity in the classroom, outweigh possible drawbacks like longer preparation times, technical difficulties or difficult assessment. Hurdles in the classroom are identified and possible solutions discussed. Empirical investigations in the different settings reveal that "My Interactive Garden" and physical computing in general have a positive impact, among others, on learner motivation, fun and interest in class and perceived competencies. Finally, the results from all evaluations are combined to evaluate the design principles for physical computing teaching and to provide a perspective on the development of decision-making aids for physical computing activities in school education.}, language = {en} } @article{PrzybyllaRomeike2015, author = {Przybylla, Mareen and Romeike, Ralf}, title = {Key Competences with Physical Computing}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82904}, pages = {351 -- 361}, year = {2015}, abstract = {Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world that arise from the learners' imagination. This way, constructionist learning is raised to a level that enables students to gain haptic experience and thereby concretizes the virtual. In this paper the defining characteristics of physical computing are described. Key competences to be gained with physical computing will be identified.}, language = {en} } @masterthesis{Repp2023, type = {Bachelor Thesis}, author = {Repp, Leo}, title = {Extending the automatic theorem prover nanoCoP with arithmetic procedures}, doi = {10.25932/publishup-57619}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576195}, school = {Universit{\"a}t Potsdam}, pages = {52}, year = {2023}, abstract = {In dieser Bachelorarbeit implementiere ich den automatischen Theorembeweiser nanoCoP-Ω. Es handelt sich bei diesem neuen System um das Ergebnis einer Portierung von Arithmetik-behandelnden Prozeduren aus dem automatischen Theorembeweiser mit Arithmetik leanCoP-Ω in das System nanoCoP 2.0. Dazu wird zuerst der mathematische Hintergrund zu automatischen Theorembeweisern und Arithmetik gegeben. Ich stelle die Vorg{\"a}ngerprojekte leanCoP, nanoCoP und leanCoP-Ω vor, auf dessen Vorlage nanoCoP-Ω entwickelt wurde. Es folgt eine ausf{\"u}hrliche Erkl{\"a}rung der Konzepte, um welche der nicht-klausale Konnektionskalk{\"u}l erweitert werden muss, um eine Behandlung von arithmetischen Ausdr{\"u}cken und Gleichheiten in den Kalk{\"u}l zu integrieren, sowie eine Beschreibung der Implementierung dieser Konzepte in nanoCoP-Ω. Als letztes folgt eine experimentelle Evaluation von nanoCoP-Ω. Es wurde ein ausf{\"u}hrlicher Vergleich von Laufzeit und Anzahl gel{\"o}ster Probleme im Vergleich zum {\"a}hnlich aufgebauten Theorembeweiser leanCoP-Ω auf Basis der TPTP-Benchmark durchgef{\"u}hrt. Ich komme zu dem Ergebnis, dass nanoCoP-Ω deutlich schneller ist als leanCoP-Ω ist, jedoch weniger gut geeignet f{\"u}r gr{\"o}ßere Probleme. Zudem konnte ich feststellen, dass nanoCoP-Ω falsche Beweise liefern kann. Ich bespreche, wie dieses Problem gel{\"o}st werden kann, sowie einige m{\"o}gliche Optimierungen und Erweiterungen des Beweissystems.}, language = {en} } @phdthesis{Raetsch2001, author = {R{\"a}tsch, Gunnar}, title = {Robust boosting via convex optimization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000399}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugeh{\"o}rigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Absch{\"a}tzung der Vorhersagequalit{\"a}t auf ungesehenen Mustern. K{\"u}rzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalit{\"a}t der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu l{\"o}sen, deren L{\"o}sung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien f{\"u}r eine große Familie von Boosting-{\"a}hnlichen Algorithmen zu geben. o Kann man Boosting robust gegen{\"u}ber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivit{\"a}t gegen{\"u}ber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting {\"u}bertragen. Das f{\"u}hrt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden urspr{\"u}nglich f{\"u}r Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-{\"a}hnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tats{\"a}chlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-{\"U}berwachungssystem und bei der Entwicklung neuer Medikamente illustriert.}, language = {en} } @phdthesis{Sahlmann2021, author = {Sahlmann, Kristina}, title = {Network management with semantic descriptions for interoperability on the Internet of Things}, doi = {10.25932/publishup-52984}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-529846}, school = {Universit{\"a}t Potsdam}, pages = {x, 272}, year = {2021}, abstract = {The Internet of Things (IoT) is a system of physical objects that can be discovered, monitored, controlled, or interacted with by electronic devices that communicate over various networking interfaces and eventually can be connected to the wider Internet. [Guinard and Trifa, 2016]. IoT devices are equipped with sensors and/or actuators and may be constrained in terms of memory, computational power, network bandwidth, and energy. Interoperability can help to manage such heterogeneous devices. Interoperability is the ability of different types of systems to work together smoothly. There are four levels of interoperability: physical, network and transport, integration, and data. The data interoperability is subdivided into syntactic and semantic data. Semantic data describes the meaning of data and the common understanding of vocabulary e.g. with the help of dictionaries, taxonomies, ontologies. To achieve interoperability, semantic interoperability is necessary. Many organizations and companies are working on standards and solutions for interoperability in the IoT. However, the commercial solutions produce a vendor lock-in. They focus on centralized approaches such as cloud-based solutions. This thesis proposes a decentralized approach namely Edge Computing. Edge Computing is based on the concepts of mesh networking and distributed processing. This approach has an advantage that information collection and processing are placed closer to the sources of this information. The goals are to reduce traffic, latency, and to be robust against a lossy or failed Internet connection. We see management of IoT devices from the network configuration management perspective. This thesis proposes a framework for network configuration management of heterogeneous, constrained IoT devices by using semantic descriptions for interoperability. The MYNO framework is an acronym for MQTT, YANG, NETCONF and Ontology. The NETCONF protocol is the IETF standard for network configuration management. The MQTT protocol is the de-facto standard in the IoT. We picked up the idea of the NETCONF-MQTT bridge, originally proposed by Scheffler and Bonneß[2017], and extended it with semantic device descriptions. These device descriptions provide a description of the device capabilities. They are based on the oneM2M Base ontology and formalized by the Semantic Web Standards. The novel approach is using a ontology-based device description directly on a constrained device in combination with the MQTT protocol. The bridge was extended in order to query such descriptions. Using a semantic annotation, we achieved that the device capabilities are self-descriptive, machine readable and re-usable. The concept of a Virtual Device was introduced and implemented, based on semantic device descriptions. A Virtual Device aggregates the capabilities of all devices at the edge network and contributes therefore to the scalability. Thus, it is possible to control all devices via a single RPC call. The model-driven NETCONF Web-Client is generated automatically from this YANG model which is generated by the bridge based on the semantic device description. The Web-Client provides a user-friendly interface, offers RPC calls and displays sensor values. We demonstrate the feasibility of this approach in different use cases: sensor and actuator scenarios, as well as event configuration and triggering. The semantic approach results in increased memory overhead. Therefore, we evaluated CBOR and RDF HDT for optimization of ontology-based device descriptions for use on constrained devices. The evaluation shows that CBOR is not suitable for long strings and RDF HDT is a promising candidate but is still a W3C Member Submission. Finally, we used an optimized JSON-LD format for the syntax of the device descriptions. One of the security tasks of network management is the distribution of firmware updates. The MYNO Update Protocol (MUP) was developed and evaluated on constrained devices CC2538dk and 6LoWPAN. The MYNO update process is focused on freshness and authenticity of the firmware. The evaluation shows that it is challenging but feasible to bring the firmware updates to constrained devices using MQTT. As a new requirement for the next MQTT version, we propose to add a slicing feature for the better support of constrained devices. The MQTT broker should slice data to the maximum packet size specified by the device and transfer it slice-by-slice. For the performance and scalability evaluation of MYNO framework, we setup the High Precision Agriculture demonstrator with 10 ESP-32 NodeMCU boards at the edge of the network. The ESP-32 NodeMCU boards, connected by WLAN, were equipped with six sensors and two actuators. The performance evaluation shows that the processing of ontology-based descriptions on a Raspberry Pi 3B with the RDFLib is a challenging task regarding computational power. Nevertheless, it is feasible because it must be done only once per device during the discovery process. The MYNO framework was tested with heterogeneous devices such as CC2538dk from Texas Instruments, Arduino Y{\´u}n Rev 3, and ESP-32 NodeMCU, and IP-based networks such as 6LoWPAN and WLAN. Summarizing, with the MYNO framework we could show that the semantic approach on constrained devices is feasible in the IoT.}, language = {en} } @misc{SahlmannClemensNowaketal.2020, author = {Sahlmann, Kristina and Clemens, Vera and Nowak, Michael and Schnor, Bettina}, title = {MUP}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1094}, issn = {1866-8372}, doi = {10.25932/publishup-48901}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489013}, pages = {23}, year = {2020}, abstract = {Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT device is known, it has to be fixed as soon as possible. This requires a firmware update procedure. In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the freshness of the firmware, authenticates the new firmware and considers constrained devices. We show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in MQTT 5 which can help to improve the support of constrained devices.}, language = {en} } @phdthesis{Sawade2012, author = {Sawade, Christoph}, title = {Active evaluation of predictive models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-255-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65583}, school = {Universit{\"a}t Potsdam}, pages = {ix, 157}, year = {2012}, abstract = {The field of machine learning studies algorithms that infer predictive models from data. Predictive models are applicable for many practical tasks such as spam filtering, face and handwritten digit recognition, and personalized product recommendation. In general, they are used to predict a target label for a given data instance. In order to make an informed decision about the deployment of a predictive model, it is crucial to know the model's approximate performance. To evaluate performance, a set of labeled test instances is required that is drawn from the distribution the model will be exposed to at application time. In many practical scenarios, unlabeled test instances are readily available, but the process of labeling them can be a time- and cost-intensive task and may involve a human expert. This thesis addresses the problem of evaluating a given predictive model accurately with minimal labeling effort. We study an active model evaluation process that selects certain instances of the data according to an instrumental sampling distribution and queries their labels. We derive sampling distributions that minimize estimation error with respect to different performance measures such as error rate, mean squared error, and F-measures. An analysis of the distribution that governs the estimator leads to confidence intervals, which indicate how precise the error estimation is. Labeling costs may vary across different instances depending on certain characteristics of the data. For instance, documents differ in their length, comprehensibility, and technical requirements; these attributes affect the time a human labeler needs to judge relevance or to assign topics. To address this, the sampling distribution is extended to incorporate instance-specific costs. We empirically study conditions under which the active evaluation processes are more accurate than a standard estimate that draws equally many instances from the test distribution. We also address the problem of comparing the risks of two predictive models. The standard approach would be to draw instances according to the test distribution, label the selected instances, and apply statistical tests to identify significant differences. Drawing instances according to an instrumental distribution affects the power of a statistical test. We derive a sampling procedure that maximizes test power when used to select instances, and thereby minimizes the likelihood of choosing the inferior model. Furthermore, we investigate the task of comparing several alternative models; the objective of an evaluation could be to rank the models according to the risk that they incur or to identify the model with lowest risk. An experimental study shows that the active procedure leads to higher test power than the standard test in many application domains. Finally, we study the problem of evaluating the performance of ranking functions, which are used for example for web search. In practice, ranking performance is estimated by applying a given ranking model to a representative set of test queries and manually assessing the relevance of all retrieved items for each query. We apply the concepts of active evaluation and active comparison to ranking functions and derive optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs.}, language = {en} } @phdthesis{Schneider2019, author = {Schneider, Jan Niklas}, title = {Computational approaches for emotion research}, doi = {10.25932/publishup-45927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459275}, school = {Universit{\"a}t Potsdam}, pages = {xv, 145}, year = {2019}, abstract = {Emotionen sind ein zentrales Element menschlichen Erlebens und spielen eine wichtige Rolle bei der Entscheidungsfindung. Diese Dissertation identifiziert drei methodische Probleme der aktuellen Emotionsforschung und zeigt auf, wie diese mittels computergest{\"u}tzter Methoden gel{\"o}st werden k{\"o}nnen. Dieser Ansatz wird in drei Forschungsprojekten demonstriert, die die Entwicklung solcher Methoden sowie deren Anwendung auf konkrete Forschungsfragen beschreiben. Das erste Projekt beschreibt ein Paradigma welches es erm{\"o}glicht, die subjektive und objektive Schwierigkeit der Emotionswahrnehmung zu messen. Dar{\"u}ber hinaus erm{\"o}glicht es die Verwendung einer beliebigen Anzahl von Emotionskategorien im Vergleich zu den {\"u}blichen sechs Kategorien der Basisemotionen. Die Ergebnisse deuten auf eine Zunahme der Schwierigkeiten bei der Wahrnehmung von Emotionen mit zunehmendem Alter der Darsteller hin und liefern Hinweise darauf, dass junge Erwachsene, {\"a}ltere Menschen und M{\"a}nner ihre Schwierigkeit bei der Wahrnehmung von Emotionen untersch{\"a}tzen. Weitere Analysen zeigten eine geringe Relevanz personenbezogener Variablen und deuteten darauf hin, dass die Schwierigkeit der Emotionswahrnehmung vornehmlich durch die Auspr{\"a}gung der Wertigkeit des Ausdrucks bestimmt wird. Das zweite Projekt zeigt am Beispiel von Arousal, einem etablierten, aber vagen Konstrukt der Emotionsforschung, wie Face-Tracking-Daten dazu genutzt werden k{\"o}nnen solche Konstrukte zu sch{\"a}rfen. Es beschreibt, wie aus Face-Tracking-Daten Maße f{\"u}r die Entfernung, Geschwindigkeit und Beschleunigung von Gesichtsausdr{\"u}cken berechnet werden k{\"o}nnen. Das Projekt untersuchte wie diesen Maße mit der Arousal-Wahrnehmung in Menschen mit und ohne Autismus zusammenh{\"a}ngen. Der Abstand zum Neutralgesicht war pr{\"a}diktiv f{\"u}r die Arousal-Bewertungen in beiden Gruppen. Die Ergebnisse deuten auf eine qualitativ {\"a}hnliche Wahrnehmung von Arousal f{\"u}r Menschen mit und ohne Autismus hin. Im dritten Projekt stellen wir die Partial-Least-Squares-Analyse als allgemeine Methode vor, um eine optimale Repr{\"a}sentation zur Verkn{\"u}pfung zweier hochdimensionale Datens{\"a}tze zu finden. Das Projekt demonstriert die Anwendbarkeit dieser Methode in der Emotionsforschung anhand der Frage nach Unterschieden in der Emotionswahrnehmung zwischen M{\"a}nnern und Frauen. Wir konnten zeigen, dass die emotionale Wahrnehmung von Frauen systematisch mehr Varianz der Gesichtsausdr{\"u}cke erfasst und dass signifikante Unterschiede in der Art und Weise bestehen, wie Frauen und M{\"a}nner einige Gesichtsausdr{\"u}cke wahrnehmen. Diese konnten wir als dynamische Gesichtsausdr{\"u}cke visualisieren. Um die Anwendung der entwickelten Methode f{\"u}r die Forschungsgemeinschaft zu erleichtern, wurde ein Software-Paket f{\"u}r die Statistikumgebung R geschrieben. Zudem wurde eine Website entwickelt (thisemotiondoesnotexist.com), die es Besuchern erlaubt, ein Partial-Least-Squares-Modell von Emotionsbewertungen und Face-Tracking-Daten interaktiv zu erkunden, um die entwickelte Methode zu verbreiten und ihren Nutzen f{\"u}r die Emotionsforschung zu illustrieren.}, language = {en} } @phdthesis{Scholz2006, author = {Scholz, Matthias}, title = {Approaches to analyse and interpret biological profile data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7839}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics.}, subject = {Bioinformatik}, language = {en} } @phdthesis{Schrape2023, author = {Schrape, Oliver}, title = {Methodology for standard cell-based design and implementation of reliable and robust hardware systems}, doi = {10.25932/publishup-58932}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589326}, school = {Universit{\"a}t Potsdam}, pages = {xi, 181}, year = {2023}, abstract = {Reliable and robust data processing is one of the hardest requirements for systems in fields such as medicine, security, automotive, aviation, and space, to prevent critical system failures caused by changes in operating or environmental conditions. In particular, Signal Integrity (SI) effects such as crosstalk may distort the signal information in sensitive mixed-signal designs. A challenge for hardware systems used in the space are radiation effects. Namely, Single Event Effects (SEEs) induced by high-energy particle hits may lead to faulty computation, corrupted configuration settings, undesired system behavior, or even total malfunction. Since these applications require an extra effort in design and implementation, it is beneficial to master the standard cell design process and corresponding design flow methodologies optimized for such challenges. Especially for reliable, low-noise differential signaling logic such as Current Mode Logic (CML), a digital design flow is an orthogonal approach compared to traditional manual design. As a consequence, mandatory preliminary considerations need to be addressed in more detail. First of all, standard cell library concepts with suitable cell extensions for reliable systems and robust space applications have to be elaborated. Resulting design concepts at the cell level should enable the logical synthesis for differential logic design or improve the radiation-hardness. In parallel, the main objectives of the proposed cell architectures are to reduce the occupied area, power, and delay overhead. Second, a special setup for standard cell characterization is additionally required for a proper and accurate logic gate modeling. Last but not least, design methodologies for mandatory design flow stages such as logic synthesis and place and route need to be developed for the respective hardware systems to keep the reliability or the radiation-hardness at an acceptable level. This Thesis proposes and investigates standard cell-based design methodologies and techniques for reliable and robust hardware systems implemented in a conventional semi-conductor technology. The focus of this work is on reliable differential logic design and robust radiation-hardening-by-design circuits. The synergistic connections of the digital design flow stages are systematically addressed for these two types of hardware systems. In more detail, a library for differential logic is extended with single-ended pseudo-gates for intermediate design steps to support the logic synthesis and layout generation with commercial Computer-Aided Design (CAD) tools. Special cell layouts are proposed to relax signal routing. A library set for space applications is similarly extended by novel Radiation-Hardening-by-Design (RHBD) Triple Modular Redundancy (TMR) cells, enabling a one fault correction. Therein, additional optimized architectures for glitch filter cells, robust scannable and self-correcting flip-flops, and clock-gates are proposed. The circuit concepts and the physical layout representation views of the differential logic gates and the RHBD cells are discussed. However, the quality of results of designs depends implicitly on the accuracy of the standard cell characterization which is examined for both types therefore. The entire design flow is elaborated from the hardware design description to the layout representations. A 2-Phase routing approach together with an intermediate design conversion step is proposed after the initial place and route stage for reliable, pure differential designs, whereas a special constraining for RHBD applications in a standard technology is presented. The digital design flow for differential logic design is successfully demonstrated on a reliable differential bipolar CML application. A balanced routing result of its differential signal pairs is obtained by the proposed 2-Phase-routing approach. Moreover, the elaborated standard cell concepts and design methodology for RHBD circuits are applied to the digital part of a 7.5-15.5 MSPS 14-bit Analog-to-Digital Converter (ADC) and a complex microcontroller architecture. The ADC is implemented in an unhardened standard semiconductor technology and successfully verified by electrical measurements. The overhead of the proposed hardening approach is additionally evaluated by design exploration of the microcontroller application. Furthermore, the first obtained related measurement results of novel RHBD-∆TMR flip-flops show a radiation-tolerance up to a threshold Linear Energy Transfer (LET) of 46.1, 52.0, and 62.5 MeV cm2 mg-1 and savings in silicon area of 25-50 \% for selected TMR standard cell candidates. As a conclusion, the presented design concepts at the cell and library levels, as well as the design flow modifications are adaptable and transferable to other technology nodes. In particular, the design of hybrid solutions with integrated reliable differential logic modules together with robust radiation-tolerant circuit parts is enabled by the standard cell concepts and design methods proposed in this work.}, language = {en} } @phdthesis{Seibel2012, author = {Seibel, Andreas}, title = {Traceability and model management with executable and dynamic hierarchical megamodels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64222}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Nowadays, model-driven engineering (MDE) promises to ease software development by decreasing the inherent complexity of classical software development. In order to deliver on this promise, MDE increases the level of abstraction and automation, through a consideration of domain-specific models (DSMs) and model operations (e.g. model transformations or code generations). DSMs conform to domain-specific modeling languages (DSMLs), which increase the level of abstraction, and model operations are first-class entities of software development because they increase the level of automation. Nevertheless, MDE has to deal with at least two new dimensions of complexity, which are basically caused by the increased linguistic and technological heterogeneity. The first dimension of complexity is setting up an MDE environment, an activity comprised of the implementation or selection of DSMLs and model operations. Setting up an MDE environment is both time-consuming and error-prone because of the implementation or adaptation of model operations. The second dimension of complexity is concerned with applying MDE for actual software development. Applying MDE is challenging because a collection of DSMs, which conform to potentially heterogeneous DSMLs, are required to completely specify a complex software system. A single DSML can only be used to describe a specific aspect of a software system at a certain level of abstraction and from a certain perspective. Additionally, DSMs are usually not independent but instead have inherent interdependencies, reflecting (partial) similar aspects of a software system at different levels of abstraction or from different perspectives. A subset of these dependencies are applications of various model operations, which are necessary to keep the degree of automation high. This becomes even worse when addressing the first dimension of complexity. Due to continuous changes, all kinds of dependencies, including the applications of model operations, must also be managed continuously. This comprises maintaining the existence of these dependencies and the appropriate (re-)application of model operations. The contribution of this thesis is an approach that combines traceability and model management to address the aforementioned challenges of configuring and applying MDE for software development. The approach is considered as a traceability approach because it supports capturing and automatically maintaining dependencies between DSMs. The approach is considered as a model management approach because it supports managing the automated (re-)application of heterogeneous model operations. In addition, the approach is considered as a comprehensive model management. Since the decomposition of model operations is encouraged to alleviate the first dimension of complexity, the subsequent composition of model operations is required to counteract their fragmentation. A significant portion of this thesis concerns itself with providing a method for the specification of decoupled yet still highly cohesive complex compositions of heterogeneous model operations. The approach supports two different kinds of compositions - data-flow compositions and context compositions. Data-flow composition is used to define a network of heterogeneous model operations coupled by sharing input and output DSMs alone. Context composition is related to a concept used in declarative model transformation approaches to compose individual model transformation rules (units) at any level of detail. In this thesis, context composition provides the ability to use a collection of dependencies as context for the composition of other dependencies, including model operations. In addition, the actual implementation of model operations, which are going to be composed, do not need to implement any composition concerns. The approach is realized by means of a formalism called an executable and dynamic hierarchical megamodel, based on the original idea of megamodels. This formalism supports specifying compositions of dependencies (traceability and model operations). On top of this formalism, traceability is realized by means of a localization concept, and model management by means of an execution concept.}, language = {en} } @phdthesis{Semmo2016, author = {Semmo, Amir}, title = {Design and implementation of non-photorealistic rendering techniques for 3D geospatial data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99525}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 155}, year = {2016}, abstract = {Geospatial data has become a natural part of a growing number of information systems and services in the economy, society, and people's personal lives. In particular, virtual 3D city and landscape models constitute valuable information sources within a wide variety of applications such as urban planning, navigation, tourist information, and disaster management. Today, these models are often visualized in detail to provide realistic imagery. However, a photorealistic rendering does not automatically lead to high image quality, with respect to an effective information transfer, which requires important or prioritized information to be interactively highlighted in a context-dependent manner. Approaches in non-photorealistic renderings particularly consider a user's task and camera perspective when attempting optimal expression, recognition, and communication of important or prioritized information. However, the design and implementation of non-photorealistic rendering techniques for 3D geospatial data pose a number of challenges, especially when inherently complex geometry, appearance, and thematic data must be processed interactively. Hence, a promising technical foundation is established by the programmable and parallel computing architecture of graphics processing units. This thesis proposes non-photorealistic rendering techniques that enable both the computation and selection of the abstraction level of 3D geospatial model contents according to user interaction and dynamically changing thematic information. To achieve this goal, the techniques integrate with hardware-accelerated rendering pipelines using shader technologies of graphics processing units for real-time image synthesis. The techniques employ principles of artistic rendering, cartographic generalization, and 3D semiotics—unlike photorealistic rendering—to synthesize illustrative renditions of geospatial feature type entities such as water surfaces, buildings, and infrastructure networks. In addition, this thesis contributes a generic system that enables to integrate different graphic styles—photorealistic and non-photorealistic—and provide their seamless transition according to user tasks, camera view, and image resolution. Evaluations of the proposed techniques have demonstrated their significance to the field of geospatial information visualization including topics such as spatial perception, cognition, and mapping. In addition, the applications in illustrative and focus+context visualization have reflected their potential impact on optimizing the information transfer regarding factors such as cognitive load, integration of non-realistic information, visualization of uncertainty, and visualization on small displays.}, language = {en} } @phdthesis{Seuring2000, author = {Seuring, Markus}, title = {Output space compaction for testing and concurrent checking}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000165}, school = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {In der Dissertation werden neue Entwurfsmethoden f{\"u}r Kompaktoren f{\"u}r die Ausg{\"a}nge von digitalen Schaltungen beschrieben, die die Anzahl der zu testenden Ausg{\"a}nge drastisch verkleinern und dabei die Testbarkeit der Schaltungen nur wenig oder gar nicht verschlechtern. Der erste Teil der Arbeit behandelt f{\"u}r kombinatorische Schaltungen Methoden, die die Struktur der Schaltungen beim Entwurf der Kompaktoren ber{\"u}cksichtigen. Verschiedene Algorithmen zur Analyse von Schaltungsstrukturen werden zum ersten Mal vorgestellt und untersucht. Die Komplexit{\"a}t der vorgestellten Verfahren zur Erzeugung von Kompaktoren ist linear bez{\"u}glich der Anzahl der Gatter in der Schaltung und ist damit auf sehr große Schaltungen anwendbar. Im zweiten Teil wird erstmals ein solches Verfahren f{\"u}r sequentielle Schaltkreise beschrieben. Dieses Verfahren baut im wesentlichen auf das erste auf. Der dritte Teil beschreibt eine Entwurfsmethode, die keine Informationen {\"u}ber die interne Struktur der Schaltung oder {\"u}ber das zugrundeliegende Fehlermodell ben{\"o}tigt. Der Entwurf basiert alleine auf einem vorgegebenen Satz von Testvektoren und die dazugeh{\"o}renden Testantworten der fehlerfreien Schaltung. Ein nach diesem Verfahren erzeugter Kompaktor maskiert keinen der Fehler, die durch das Testen mit den vorgegebenen Vektoren an den Ausg{\"a}ngen der Schaltung beobachtbar sind.}, language = {en} } @phdthesis{Smirnov2011, author = {Smirnov, Sergey}, title = {Business process model abstraction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60258}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Business process models are used within a range of organizational initiatives, where every stakeholder has a unique perspective on a process and demands the respective model. As a consequence, multiple process models capturing the very same business process coexist. Keeping such models in sync is a challenge within an ever changing business environment: once a process is changed, all its models have to be updated. Due to a large number of models and their complex relations, model maintenance becomes error-prone and expensive. Against this background, business process model abstraction emerged as an operation reducing the number of stored process models and facilitating model management. Business process model abstraction is an operation preserving essential process properties and leaving out insignificant details in order to retain information relevant for a particular purpose. Process model abstraction has been addressed by several researchers. The focus of their studies has been on particular use cases and model transformations supporting these use cases. This thesis systematically approaches the problem of business process model abstraction shaping the outcome into a framework. We investigate the current industry demand in abstraction summarizing it in a catalog of business process model abstraction use cases. The thesis focuses on one prominent use case where the user demands a model with coarse-grained activities and overall process ordering constraints. We develop model transformations that support this use case starting with the transformations based on process model structure analysis. Further, abstraction methods considering the semantics of process model elements are investigated. First, we suggest how semantically related activities can be discovered in process models-a barely researched challenge. The thesis validates the designed abstraction methods against sets of industrial process models and discusses the method implementation aspects. Second, we develop a novel model transformation, which combined with the related activity discovery allows flexible non-hierarchical abstraction. In this way this thesis advocates novel model transformations that facilitate business process model management and provides the foundations for innovative tool support.}, language = {en} } @misc{Strickroth2019, author = {Strickroth, Sven}, title = {PLATON}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {804}, issn = {1866-8372}, doi = {10.25932/publishup-44188}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441887}, pages = {28}, year = {2019}, abstract = {Lesson planning is both an important and demanding task—especially as part of teacher training. This paper presents the requirements for a lesson planning system and evaluates existing systems regarding these requirements. One major drawback of existing software tools is that most are limited to a text- or form-based representation of the lesson designs. In this article, a new approach with a graphical, time-based representation with (automatic) analyses methods is proposed and the system architecture and domain model are described in detail. The approach is implemented in an interactive, web-based prototype called PLATON, which additionally supports the management of lessons in units as well as the modelling of teacher and student-generated resources. The prototype was evaluated in a study with 61 prospective teachers (bachelor's and master's preservice teachers as well as teacher trainees in post-university teacher training) in Berlin, Germany, with a focus on usability. The results show that this approach proofed usable for lesson planning and offers positive effects for the perception of time and self-reflection.}, language = {en} } @phdthesis{Thiele2011, author = {Thiele, Sven}, title = {Modeling biological systems with Answer Set Programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59383}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Biology has made great progress in identifying and measuring the building blocks of life. The availability of high-throughput methods in molecular biology has dramatically accelerated the growth of biological knowledge for various organisms. The advancements in genomic, proteomic and metabolomic technologies allow for constructing complex models of biological systems. An increasing number of biological repositories is available on the web, incorporating thousands of biochemical reactions and genetic regulations. Systems Biology is a recent research trend in life science, which fosters a systemic view on biology. In Systems Biology one is interested in integrating the knowledge from all these different sources into models that capture the interaction of these entities. By studying these models one wants to understand the emerging properties of the whole system, such as robustness. However, both measurements as well as biological networks are prone to considerable incompleteness, heterogeneity and mutual inconsistency, which makes it highly non-trivial to draw biologically meaningful conclusions in an automated way. Therefore, we want to promote Answer Set Programming (ASP) as a tool for discrete modeling in Systems Biology. ASP is a declarative problem solving paradigm, in which a problem is encoded as a logic program such that its answer sets represent solutions to the problem. ASP has intrinsic features to cope with incompleteness, offers a rich modeling language and highly efficient solving technology. We present ASP solutions, for the analysis of genetic regulatory networks, determining consistency with observed measurements and identifying minimal causes for inconsistency. We extend this approach for computing minimal repairs on model and data that restore consistency. This method allows for predicting unobserved data even in case of inconsistency. Further, we present an ASP approach to metabolic network expansion. This approach exploits the easy characterization of reachability in ASP and its various reasoning methods, to explore the biosynthetic capabilities of metabolic reaction networks and generate hypotheses for extending the network. Finally, we present the BioASP library, a Python library which encapsulates our ASP solutions into the imperative programming paradigm. The library allows for an easy integration of ASP solution into system rich environments, as they exist in Systems Biology.}, language = {en} } @misc{Trapp2007, type = {Master Thesis}, author = {Trapp, Matthias}, title = {Analysis and exploration of virtual 3D city models using 3D information lenses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13930}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This thesis addresses real-time rendering techniques for 3D information lenses based on the focus \& context metaphor. It analyzes, conceives, implements, and reviews its applicability to objects and structures of virtual 3D city models. In contrast to digital terrain models, the application of focus \& context visualization to virtual 3D city models is barely researched. However, the purposeful visualization of contextual data of is extreme importance for the interactive exploration and analysis of this field. Programmable hardware enables the implementation of new lens techniques, that allow the augmentation of the perceptive and cognitive quality of the visualization compared to classical perspective projections. A set of 3D information lenses is integrated into a 3D scene-graph system: • Occlusion lenses modify the appearance of virtual 3D city model objects to resolve their occlusion and consequently facilitate the navigation. • Best-view lenses display city model objects in a priority-based manner and mediate their meta information. Thus, they support exploration and navigation of virtual 3D city models. • Color and deformation lenses modify the appearance and geometry of 3D city models to facilitate their perception. The presented techniques for 3D information lenses and their application to virtual 3D city models clarify their potential for interactive visualization and form a base for further development.}, language = {en} } @phdthesis{Trapp2013, author = {Trapp, Matthias}, title = {Interactive rendering techniques for focus+context visualization of 3D geovirtual environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66824}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis introduces a collection of new real-time rendering techniques and applications for focus+context visualization of interactive 3D geovirtual environments such as virtual 3D city and landscape models. These environments are generally characterized by a large number of objects and are of high complexity with respect to geometry and textures. For these reasons, their interactive 3D rendering represents a major challenge. Their 3D depiction implies a number of weaknesses such as occlusions, cluttered image contents, and partial screen-space usage. To overcome these limitations and, thus, to facilitate the effective communication of geo-information, principles of focus+context visualization can be used for the design of real-time 3D rendering techniques for 3D geovirtual environments (see Figure). In general, detailed views of a 3D geovirtual environment are combined seamlessly with abstracted views of the context within a single image. To perform the real-time image synthesis required for interactive visualization, dedicated parallel processors (GPUs) for rasterization of computer graphics primitives are used. For this purpose, the design and implementation of appropriate data structures and rendering pipelines are necessary. The contribution of this work comprises the following five real-time rendering methods: • The rendering technique for 3D generalization lenses enables the combination of different 3D city geometries (e.g., generalized versions of a 3D city model) in a single image in real time. The method is based on a generalized and fragment-precise clipping approach, which uses a compressible, raster-based data structure. It enables the combination of detailed views in the focus area with the representation of abstracted variants in the context area. • The rendering technique for the interactive visualization of dynamic raster data in 3D geovirtual environments facilitates the rendering of 2D surface lenses. It enables a flexible combination of different raster layers (e.g., aerial images or videos) using projective texturing for decoupling image and geometry data. Thus, various overlapping and nested 2D surface lenses of different contents can be visualized interactively. • The interactive rendering technique for image-based deformation of 3D geovirtual environments enables the real-time image synthesis of non-planar projections, such as cylindrical and spherical projections, as well as multi-focal 3D fisheye-lenses and the combination of planar and non-planar projections. • The rendering technique for view-dependent multi-perspective views of 3D geovirtual environments, based on the application of global deformations to the 3D scene geometry, can be used for synthesizing interactive panorama maps to combine detailed views close to the camera (focus) with abstract views in the background (context). This approach reduces occlusions, increases the usage the available screen space, and reduces the overload of image contents. • The object-based and image-based rendering techniques for highlighting objects and focus areas inside and outside the view frustum facilitate preattentive perception. The concepts and implementations of interactive image synthesis for focus+context visualization and their selected applications enable a more effective communication of spatial information, and provide building blocks for design and development of new applications and systems in the field of 3D geovirtual environments.}, language = {en} } @phdthesis{Videla2014, author = {Videla, Santiago}, title = {Reasoning on the response of logical signaling networks with answer set programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71890}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Deciphering the functioning of biological networks is one of the central tasks in systems biology. In particular, signal transduction networks are crucial for the understanding of the cellular response to external and internal perturbations. Importantly, in order to cope with the complexity of these networks, mathematical and computational modeling is required. We propose a computational modeling framework in order to achieve more robust discoveries in the context of logical signaling networks. More precisely, we focus on modeling the response of logical signaling networks by means of automated reasoning using Answer Set Programming (ASP). ASP provides a declarative language for modeling various knowledge representation and reasoning problems. Moreover, available ASP solvers provide several reasoning modes for assessing the multitude of answer sets. Therefore, leveraging its rich modeling language and its highly efficient solving capacities, we use ASP to address three challenging problems in the context of logical signaling networks: learning of (Boolean) logical networks, experimental design, and identification of intervention strategies. Overall, the contribution of this thesis is three-fold. Firstly, we introduce a mathematical framework for characterizing and reasoning on the response of logical signaling networks. Secondly, we contribute to a growing list of successful applications of ASP in systems biology. Thirdly, we present a software providing a complete pipeline for automated reasoning on the response of logical signaling networks.}, language = {en} } @phdthesis{Wang2011, author = {Wang, Long}, title = {X-tracking the usage interest on web sites}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51077}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The exponential expanding of the numbers of web sites and Internet users makes WWW the most important global information resource. From information publishing and electronic commerce to entertainment and social networking, the Web allows an inexpensive and efficient access to the services provided by individuals and institutions. The basic units for distributing these services are the web sites scattered throughout the world. However, the extreme fragility of web services and content, the high competence between similar services supplied by different sites, and the wide geographic distributions of the web users drive the urgent requirement from the web managers to track and understand the usage interest of their web customers. This thesis, "X-tracking the Usage Interest on Web Sites", aims to fulfill this requirement. "X" stands two meanings: one is that the usage interest differs from various web sites, and the other is that usage interest is depicted from multi aspects: internal and external, structural and conceptual, objective and subjective. "Tracking" shows that our concentration is on locating and measuring the differences and changes among usage patterns. This thesis presents the methodologies on discovering usage interest on three kinds of web sites: the public information portal site, e-learning site that provides kinds of streaming lectures and social site that supplies the public discussions on IT issues. On different sites, we concentrate on different issues related with mining usage interest. The educational information portal sites were the first implementation scenarios on discovering usage patterns and optimizing the organization of web services. In such cases, the usage patterns are modeled as frequent page sets, navigation paths, navigation structures or graphs. However, a necessary requirement is to rebuild the individual behaviors from usage history. We give a systematic study on how to rebuild individual behaviors. Besides, this thesis shows a new strategy on building content clusters based on pair browsing retrieved from usage logs. The difference between such clusters and the original web structure displays the distance between the destinations from usage side and the expectations from design side. Moreover, we study the problem on tracking the changes of usage patterns in their life cycles. The changes are described from internal side integrating conceptual and structure features, and from external side for the physical features; and described from local side measuring the difference between two time spans, and global side showing the change tendency along the life cycle. A platform, Web-Cares, is developed to discover the usage interest, to measure the difference between usage interest and site expectation and to track the changes of usage patterns. E-learning site provides the teaching materials such as slides, recorded lecture videos and exercise sheets. We focus on discovering the learning interest on streaming lectures, such as real medias, mp4 and flash clips. Compared to the information portal site, the usage on streaming lectures encapsulates the variables such as viewing time and actions during learning processes. The learning interest is discovered in the form of answering 6 questions, which covers finding the relations between pieces of lectures and the preference among different forms of lectures. We prefer on detecting the changes of learning interest on the same course from different semesters. The differences on the content and structure between two courses leverage the changes on the learning interest. We give an algorithm on measuring the difference on learning interest integrated with similarity comparison between courses. A search engine, TASK-Moniminer, is created to help the teacher query the learning interest on their streaming lectures on tele-TASK site. Social site acts as an online community attracting web users to discuss the common topics and share their interesting information. Compared to the public information portal site and e-learning web site, the rich interactions among users and web content bring the wider range of content quality, on the other hand, provide more possibilities to express and model usage interest. We propose a framework on finding and recommending high reputation articles in a social site. We observed that the reputation is classified into global and local categories; the quality of the articles having high reputation is related with the content features. Based on these observations, our framework is implemented firstly by finding the articles having global or local reputation, and secondly clustering articles based on their content relations, and then the articles are selected and recommended from each cluster based on their reputation ranks.}, language = {en} } @article{WegnerZenderLucke2015, author = {Wegner, Christian and Zender, Raphael and Lucke, Ulrike}, title = {ProtoSense}, series = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, journal = {KEYCIT 2014 - Key Competencies in Informatics and ICT}, number = {7}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82970}, pages = {405 -- 407}, year = {2015}, language = {en} } @phdthesis{Wist2011, author = {Wist, Dominic}, title = {Attacking complexity in logic synthesis of asynchronous circuits}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59706}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Most of the microelectronic circuits fabricated today are synchronous, i.e. they are driven by one or several clock signals. Synchronous circuit design faces several fundamental challenges such as high-speed clock distribution, integration of multiple cores operating at different clock rates, reduction of power consumption and dealing with voltage, temperature, manufacturing and runtime variations. Asynchronous or clockless design plays a key role in alleviating these challenges, however the design and test of asynchronous circuits is much more difficult in comparison to their synchronous counterparts. A driving force for a widespread use of asynchronous technology is the availability of mature EDA (Electronic Design Automation) tools which provide an entire automated design flow starting from an HDL (Hardware Description Language) specification yielding the final circuit layout. Even though there was much progress in developing such EDA tools for asynchronous circuit design during the last two decades, the maturity level as well as the acceptance of them is still not comparable with tools for synchronous circuit design. In particular, logic synthesis (which implies the application of Boolean minimisation techniques) for the entire system's control path can significantly improve the efficiency of the resulting asynchronous implementation, e.g. in terms of chip area and performance. However, logic synthesis, in particular for asynchronous circuits, suffers from complexity problems. Signal Transitions Graphs (STGs) are labelled Petri nets which are a widely used to specify the interface behaviour of speed independent (SI) circuits - a robust subclass of asynchronous circuits. STG decomposition is a promising approach to tackle complexity problems like state space explosion in logic synthesis of SI circuits. The (structural) decomposition of STGs is guided by a partition of the output signals and generates a usually much smaller component STG for each partition member, i.e. a component STG with a much smaller state space than the initial specification. However, decomposition can result in component STGs that in isolation have so-called irreducible CSC conflicts (i.e. these components are not SI synthesisable anymore) even if the specification has none of them. A new approach is presented to avoid such conflicts by introducing internal communication between the components. So far, STG decompositions are guided by the finest output partitions, i.e. one output per component. However, this might not yield optimal circuit implementations. Efficient heuristics are presented to determine coarser partitions leading to improved circuits in terms of chip area. For the new algorithms correctness proofs are given and their implementations are incorporated into the decomposition tool DESIJ. The presented techniques are successfully applied to some benchmarks - including 'real-life' specifications arising in the context of control resynthesis - which delivered promising results.}, language = {en} } @phdthesis{Ziehe2005, author = {Ziehe, Andreas}, title = {Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5694}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This thesis is concerned with the solution of the blind source separation problem (BSS). The BSS problem occurs frequently in various scientific and technical applications. In essence, it consists in separating meaningful underlying components out of a mixture of a multitude of superimposed signals. In the recent research literature there are two related approaches to the BSS problem: The first is known as Independent Component Analysis (ICA), where the goal is to transform the data such that the components become as independent as possible. The second is based on the notion of diagonality of certain characteristic matrices derived from the data. Here the goal is to transform the matrices such that they become as diagonal as possible. In this thesis we study the latter method of approximate joint diagonalization (AJD) to achieve a solution of the BSS problem. After an introduction to the general setting, the thesis provides an overview on particular choices for the set of target matrices that can be used for BSS by joint diagonalization. As the main contribution of the thesis, new algorithms for approximate joint diagonalization of several matrices with non-orthogonal transformations are developed. These newly developed algorithms will be tested on synthetic benchmark datasets and compared to other previous diagonalization algorithms. Applications of the BSS methods to biomedical signal processing are discussed and exemplified with real-life data sets of multi-channel biomagnetic recordings.}, subject = {Signaltrennung}, language = {en} } @inproceedings{OPUS4-3955, title = {Proceedings of the 23rd Workshop on (Constraint) Logic Programming 2009}, editor = {Geske, Ulrich and Wolf, Armin}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-026-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37977}, pages = {187}, year = {2010}, abstract = {The workshops on (constraint) logic programming (WLP) are the annual meeting of the Society of Logic Programming (GLP e.V.) and bring together researchers interested in logic programming, constraint programming, and related areas like databases, artificial intelligence and operations research. The 23rd WLP was held in Potsdam at September 15 - 16, 2009. The topics of the presentations of WLP2009 were grouped into the major areas: Databases, Answer Set Programming, Theory and Practice of Logic Programming as well as Constraints and Constraint Handling Rules.}, language = {en} }