@article{AngelopoulosOverduinWestermannetal.2020, author = {Angelopoulos, Michael and Overduin, Pier Paul and Westermann, Sebastian and Tronicke, Jens and Strauss, Jens and Schirrmeister, Lutz and Biskaborn, Boris and Liebner, Susanne and Maksimov, Georgii and Grigoriev, Mikhail N. and Grosse, Guido}, title = {Thermokarst lake to lagoon transitions in Eastern Siberia}, series = {Journal of geophysical research : Earth surface}, volume = {125}, journal = {Journal of geophysical research : Earth surface}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2019JF005424}, pages = {21}, year = {2020}, abstract = {As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik.}, language = {en} } @article{JonesArpGrosseetal.2020, author = {Jones, Benjamin M. and Arp, Christopher D. and Grosse, Guido and Nitze, Ingmar and Lara, Mark J. and Whitman, Matthew S. and Farquharson, Louise M. and Kanevskiy, Mikhail and Parsekian, Andrew D. and Breen, Amy L. and Ohara, Nori and Rangel, Rodrigo Correa and Hinkel, Kenneth M.}, title = {Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska}, series = {Permafrost and Periglacial Processes}, volume = {31}, journal = {Permafrost and Periglacial Processes}, number = {1}, publisher = {Wiley}, address = {New York}, doi = {10.1002/ppp.2038}, pages = {110 -- 127}, year = {2020}, abstract = {Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25\% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85\% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.}, language = {en} } @misc{JonesArpGrosseetal.2020, author = {Jones, Benjamin M. and Arp, Christopher D. and Grosse, Guido and Nitze, Ingmar and Lara, Mark J. and Whitman, Matthew S. and Farquharson, Louise M. and Kanevskiy, Mikhail and Parsekian, Andrew D. and Breen, Amy L. and Ohara, Nori and Rangel, Rodrigo Correa and Hinkel, Kenneth M.}, title = {Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-61043}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610435}, pages = {20}, year = {2020}, abstract = {Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25\% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85\% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.}, language = {en} } @article{MorgensternOverduinGuentheretal.2020, author = {Morgenstern, Anne and Overduin, Pier Paul and G{\"u}nther, Frank and Stettner, Samuel and Ramage, Justine and Schirrmeister, Lutz and Grigoriev, Mikhail N. and Grosse, Guido}, title = {Thermo-erosional valleys in Siberian ice-rich permafrost}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.2087}, pages = {59 -- 75}, year = {2020}, abstract = {Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex.}, language = {en} } @article{RungeGrosse2020, author = {Runge, Alexandra and Grosse, Guido}, title = {Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs12152471}, pages = {23}, year = {2020}, abstract = {Permafrost is warming in the northern high latitudes, inducing highly dynamic thaw-related permafrost disturbances across the terrestrial Arctic. Monitoring and tracking of permafrost disturbances is important as they impact surrounding landscapes, ecosystems and infrastructure. Remote sensing provides the means to detect, map, and quantify these changes homogeneously across large regions and time scales. Existing Landsat-based algorithms assess different types of disturbances with similar spatiotemporal requirements. However, Landsat-based analyses are restricted in northern high latitudes due to the long repeat interval and frequent clouds, in particular at Arctic coastal sites. We therefore propose to combine Landsat and Sentinel-2 data for enhanced data coverage and present a combined annual mosaic workflow, expanding currently available algorithms, such as LandTrendr, to achieve more reliable time series analysis. We exemplary test the workflow for twelve sites across the northern high latitudes in Siberia. We assessed the number of images and cloud-free pixels, the spatial mosaic coverage and the mosaic quality with spectral comparisons. The number of available images increased steadily from 1999 to 2019 but especially from 2016 onward with the addition of Sentinel-2 images. Consequently, we have an increased number of cloud-free pixels even under challenging environmental conditions, which then serve as the input to the mosaicking process. In a comparison of annual mosaics, the Landsat+Sentinel-2 mosaics always fully covered the study areas (99.9-100 \%), while Landsat-only mosaics contained data-gaps in the same years, only reaching coverage percentages of 27.2 \%, 58.1 \%, and 69.7 \% for Sobo Sise, East Taymyr, and Kurungnakh in 2017, respectively. The spectral comparison of Landsat image, Sentinel-2 image, and Landsat+Sentinel-2 mosaic showed high correlation between the input images and mosaic bands (e.g., for Kurungnakh 0.91-0.97 between Landsat and Landsat+Sentinel-2 mosaic and 0.92-0.98 between Sentinel-2 and Landsat+Sentinel-2 mosaic) across all twelve study sites, testifying good quality mosaic results. Our results show that especially the results for northern, coastal areas was substantially improved with the Landsat+Sentinel-2 mosaics. By combining Landsat and Sentinel-2 data we accomplished to create reliably high spatial resolution input mosaics for time series analyses. Our approach allows to apply a high temporal continuous time series analysis to northern high latitude permafrost regions for the first time, overcoming substantial data gaps, and assess permafrost disturbance dynamics on an annual scale across large regions with algorithms such as LandTrendr by deriving the location, timing and progression of permafrost thaw disturbances}, language = {en} } @misc{RungeGrosse2020, author = {Runge, Alexandra and Grosse, Guido}, title = {Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1009}, issn = {1866-8372}, doi = {10.25932/publishup-48031}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480317}, pages = {25}, year = {2020}, abstract = {Permafrost is warming in the northern high latitudes, inducing highly dynamic thaw-related permafrost disturbances across the terrestrial Arctic. Monitoring and tracking of permafrost disturbances is important as they impact surrounding landscapes, ecosystems and infrastructure. Remote sensing provides the means to detect, map, and quantify these changes homogeneously across large regions and time scales. Existing Landsat-based algorithms assess different types of disturbances with similar spatiotemporal requirements. However, Landsat-based analyses are restricted in northern high latitudes due to the long repeat interval and frequent clouds, in particular at Arctic coastal sites. We therefore propose to combine Landsat and Sentinel-2 data for enhanced data coverage and present a combined annual mosaic workflow, expanding currently available algorithms, such as LandTrendr, to achieve more reliable time series analysis. We exemplary test the workflow for twelve sites across the northern high latitudes in Siberia. We assessed the number of images and cloud-free pixels, the spatial mosaic coverage and the mosaic quality with spectral comparisons. The number of available images increased steadily from 1999 to 2019 but especially from 2016 onward with the addition of Sentinel-2 images. Consequently, we have an increased number of cloud-free pixels even under challenging environmental conditions, which then serve as the input to the mosaicking process. In a comparison of annual mosaics, the Landsat+Sentinel-2 mosaics always fully covered the study areas (99.9-100 \%), while Landsat-only mosaics contained data-gaps in the same years, only reaching coverage percentages of 27.2 \%, 58.1 \%, and 69.7 \% for Sobo Sise, East Taymyr, and Kurungnakh in 2017, respectively. The spectral comparison of Landsat image, Sentinel-2 image, and Landsat+Sentinel-2 mosaic showed high correlation between the input images and mosaic bands (e.g., for Kurungnakh 0.91-0.97 between Landsat and Landsat+Sentinel-2 mosaic and 0.92-0.98 between Sentinel-2 and Landsat+Sentinel-2 mosaic) across all twelve study sites, testifying good quality mosaic results. Our results show that especially the results for northern, coastal areas was substantially improved with the Landsat+Sentinel-2 mosaics. By combining Landsat and Sentinel-2 data we accomplished to create reliably high spatial resolution input mosaics for time series analyses. Our approach allows to apply a high temporal continuous time series analysis to northern high latitude permafrost regions for the first time, overcoming substantial data gaps, and assess permafrost disturbance dynamics on an annual scale across large regions with algorithms such as LandTrendr by deriving the location, timing and progression of permafrost thaw disturbances}, language = {en} }