@article{BalkBehlLendlein2019, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Quadruple-shape hydrogels}, series = {Smart materials and structures}, volume = {28}, journal = {Smart materials and structures}, number = {5}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/1361-665X/ab0e91}, pages = {10}, year = {2019}, abstract = {The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90\%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent.}, language = {en} } @article{BalkBehlLendlein2019, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate}, series = {MRS advances}, volume = {4}, journal = {MRS advances}, number = {21}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.202}, pages = {1193 -- 1205}, year = {2019}, abstract = {Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt\%) and n-butyl acrylate (25 wt\% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50\% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt\% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed.}, language = {en} } @article{BalkBehlLendlein2020, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {12-13}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2019.447}, pages = {655 -- 666}, year = {2020}, abstract = {Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol\% (ratio 1:1:1 wt\%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200\% of elongation) resulted in a reduction of sample mass to 51 wt\% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized.}, language = {en} } @article{BalkBehlNoecheletal.2021, author = {Balk, Maria and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Enzymatically triggered Jack-in-the-box-like hydrogels}, series = {ACS applied materials \& interfaces / American Chemical Society}, volume = {13}, journal = {ACS applied materials \& interfaces / American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.1c00466}, pages = {8095 -- 8101}, year = {2021}, abstract = {Enzymes can support the synthesis or degradation of biomacromolecules in natural processes. Here, we demonstrate that enzymes can induce a macroscopic-directed movement of microstructured hydrogels following a mechanism that we call a "Jack-in-the-box" effect. The material's design is based on the formation of internal stresses induced by a deformation load on an architectured microscale, which are kinetically frozen by the generation of polyester locking domains, similar to a Jack-in-thebox toy (i.e., a compressed spring stabilized by a closed box lid). To induce the controlled macroscopic movement, the locking domains are equipped with enzyme-specific cleavable bonds (i.e., a box with a lock and key system). As a result of enzymatic reaction, a transformed shape is achieved by the release of internal stresses. There is an increase in entropy in combination with a swelling-supported stretching of polymer chains within the microarchitectured hydrogel (i.e., the encased clown pops-up with a pre-stressed movement when the box is unlocked). This utilization of an enzyme as a physiological stimulus may offer new approaches to create interactive and enzyme-specific materials for different applications such as an optical indicator of the enzyme's presence or actuators and sensors in biotechnology and in fermentation processes.}, language = {en} } @unpublished{BaudisBehlLendlein2014, author = {Baudis, Stefan and Behl, Marc and Lendlein, Andreas}, title = {Smart polymers for biomedical applications}, series = {Macromolecular chemistry and physics}, volume = {215}, journal = {Macromolecular chemistry and physics}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201400561}, pages = {2399 -- 2402}, year = {2014}, language = {en} } @article{BehlBalkLuetzowetal.2021, author = {Behl, Marc and Balk, Maria and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110207}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (T(m)s) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(e-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (M-w) were 65,000 g center dot mol(-1), 165,000 g center dot mol(-1), and 168,000 g center dot mol(-1) for MBCsalt and 80,500 g center dot mol(-1), 100,000 g center dot mol(-1), and 147,600 g center dot mol(-1) for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. T-m (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers.}, language = {en} } @article{BehlBalkMansfeldetal.2021, author = {Behl, Marc and Balk, Maria and Mansfeld, Ulrich and Lendlein, Andreas}, title = {Phase morphology of multiblock copolymers differing in sequence of blocks}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.202000672}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. It is hypothesized that a strictly alternating sequence should impact phase segregation. A library of well-defined MBC obtained by coupling oligo(epsilon-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification results in strictly alternating (MBCalt) or random (MBCran) MBC. The three different series has a weight average molecular weight (M-w) of 65 000, 165 000, and 168 000 g mol(-1) for MBCalt and 80 500, 100 000, and 147 600 g mol(-1) for MBCran. When the chain length of OCL building blocks is increased, the tendency for phase segregation is facilitated, which is attributed to the decrease in chain mobility within the MBC. Furthermore, it is found that the phase segregation disturbs the crystallization by causing heterogeneities in the semi-crystalline alignment, which is attributed to an increase of the disorder of the OCL semi-crystalline alignment.}, language = {en} } @article{BehlRazzaqMazurekBudzynskaetal.2020, author = {Behl, Marc and Razzaq, Muhammad Yasar and Mazurek-Budzynska, Magdalena and Lendlein, Andreas}, title = {Polyetheresterurethane based porous scaffolds with tailorable architectures by supercritical CO2 foaming}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {45}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2020.345}, pages = {2317 -- 2330}, year = {2020}, abstract = {Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2(scCO(2)) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 mu m along with a porosity in the range from (19 +/- 3 to 61 +/- 6)\% and interconnectivity of up to 82\%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO(2)foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.}, language = {en} } @article{BehlZhaoLendlein2020, author = {Behl, Marc and Zhao, Qian and Lendlein, Andreas}, title = {Glucose-responsive shape-memory cryogels}, series = {Journal of materials research : JMR}, volume = {35}, journal = {Journal of materials research : JMR}, number = {18}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/jmr.2020.204}, pages = {2396 -- 2404}, year = {2020}, abstract = {Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80\% and shape recovery R-r approximate to 100\% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options.}, language = {en} } @article{BhuvaneshMachatschekLysyakovaetal.2019, author = {Bhuvanesh, Thanga and Machatschek, Rainhard Gabriel and Lysyakova, Liudmila and Kratz, Karl and Schulz, Burkhard and Ma, Nan and Lendlein, Andreas}, title = {Collagen type-IV Langmuir and Langmuir-Schafer layers as model biointerfaces to direct stem cell adhesion}, series = {Biomedical materials : materials for tissue engineering and regenerative medicine}, volume = {14}, journal = {Biomedical materials : materials for tissue engineering and regenerative medicine}, number = {2}, publisher = {Inst. of Physics Publ.}, address = {Bristol}, issn = {1748-6041}, doi = {10.1088/1748-605X/aaf464}, pages = {17}, year = {2019}, abstract = {In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schafer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m(-1). Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m(-1) onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m(-1) on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.}, language = {en} } @article{BinzenLendleinKelchetal.2004, author = {Binzen, Eva and Lendlein, Andreas and Kelch, S. and Rickert, D. and Franke, R. P.}, title = {Biomaterial-microvasculature interaction on polymers after implantation in mice}, year = {2004}, language = {en} } @article{BochoveGrijpmaLendleinetal.2021, author = {Bochove, Bas van and Grijpma, Dirk W. and Lendlein, Andreas and Sepp{\"a}l{\"a}, Jukka}, title = {Designing advanced functional polymers for medicine}, series = {European polymer journal : EPJ}, volume = {155}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2021.110573}, pages = {2}, year = {2021}, language = {en} } @article{BrauneFroehlichLendleinetal.2016, author = {Braune, Steffen and Froehlich, G. M. and Lendlein, Andreas and Jung, Friedrich}, title = {Effect of temperature on platelet adherence}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152028}, pages = {681 -- 688}, year = {2016}, abstract = {BACKGROUND: Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22 degrees C and 37 degrees C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS: Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22 degrees C). PRP was incubated with the polymers either at 22 degrees C or 37 degrees C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION: Differences in the density of adherent platelets after incubation at 22 degrees C and 37 degrees C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22 degrees C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures.}, language = {en} } @article{BrauneGrossWalteretal.2016, author = {Braune, Steffen and Gross, M. and Walter, M. and Zhou, Shengqiang and Dietze, Siegfried and Rutschow, S. and Lendlein, Andreas and Tschoepe, C. and Jung, Friedrich}, title = {Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials}, series = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, volume = {104}, journal = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1552-4973}, doi = {10.1002/jbm.b.33366}, pages = {210 -- 217}, year = {2016}, abstract = {On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet—indicating the spreading and activation of the platelets—was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials.}, language = {en} } @misc{BrauneLatourReinthaleretal.2019, author = {Braune, Steffen and Latour, Robert A. and Reinthaler, Markus and Landmesser, Ulf and Lendlein, Andreas and Jung, Friedrich}, title = {In Vitro Thrombogenicity Testing of Biomaterials}, series = {Advanced healthcare materials}, volume = {8}, journal = {Advanced healthcare materials}, number = {21}, publisher = {Wiley}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201900527}, pages = {17}, year = {2019}, abstract = {The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.}, language = {en} } @article{BrauneWalterSchulzeetal.2014, author = {Braune, Steffen and Walter, M. and Schulze, F. and Lendlein, Andreas and Jung, Friedrich}, title = {Changes in platelet morphology and function during 24 hours of storage}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {58}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-141876}, pages = {159 -- 170}, year = {2014}, abstract = {For in vitro studies assessing the interaction of platelets with implant materials, common and standardized protocols for the preparation of platelet rich plasma (PRP) are lacking, which may lead to non-matching results due to the diversity of applied protocols. Particularly, the aging of platelets during prolonged preparation and storage times is discussed to lead to an underestimation of the material thrombogenicity. Here, we study the influence of whole blood-and PRP-storage times on changes in platelet morphology and function. Whole blood PFA100 closure times increased after stimulation with collagen/ADP and collagen/epinephrine. Twenty four hours after blood collection, both parameters were prolonged pathologically above the upper limit of the reference range. Numbers of circulating platelets, measured in PRP, decreased after four hours, but no longer after twenty four hours. Mean platelet volumes (MPV) and platelet large cell ratios (P-LCR, 12 fL - 40 fL) decreased over time. Immediately after blood collection, no debris or platelet aggregates could be visualized microscopically. After four hours, first debris and very small aggregates occurred. After 24 hours, platelet aggregates and also debris progressively increased. In accordance to this, the CASY system revealed an increase of platelet aggregates (up to 90 mu m diameter)with increasing storage time. The percentage of CD62P positive platelets and PF4 increased significantly with storage time in resting PRP. When soluble ADP was added to stored PRP samples, the number of activatable platelets decreased significantly over storage time. The present study reveals the importance of a consequent standardization in the preparation of WB and PRP. Platelet morphology and function, particularly platelet reactivity to adherent or soluble agonists in their surrounding milieu, changed rapidly outside the vascular system. This knowledge is of crucial interest, particularly in the field of biomaterial development for cardiovascular applications, and may help to define common standards in the in vitro hemocompatibility testing of biomaterials.}, language = {en} } @article{BrunacciNeffeWischkeetal.2019, author = {Brunacci, Nadia and Neffe, Axel T. and Wischke, Christian and Naolou, Toufik and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Oligodepsipeptide (nano)carriers}, series = {Journal of controlled release}, volume = {301}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.03.004}, pages = {146 -- 156}, year = {2019}, abstract = {High drug loads of nanoparticles are essential to efficiently provide a desired dosage in the required timeframe, however, these conditions may not be reached with so far established degradable matrices. Our conceptual approach for increasing the drug load is based on strengthening the affinity between drug and matrix in combination with stabilizing drug-matrix-hybrids through strong intermolecular matrix interactions. Here, a method for designing such complex drug-matrix hybrids is introduced employing computational methods (molecular dynamics and docking) as well as experimental studies (affinity, drug loading and distribution, drug release from films and nanoparticles). As model system, dexamethasone (DXM), relevant for the treatment of inflammatory diseases, in combination with poly[(rac-lactide)-co-glycolide] (PLGA) as standard degradable matrix or oligo[(3-(S)-sec-butyl) morpholine-2,5-dione] diol (OBMD) as matrix with hypothesized stronger interaction with DXM were investigated. Docking studies predicted higher affinity of DXM to OBMD than PLGA and displayed amide bond participation in hydrogen bonding with OBMD. Experimental investigations on films and nanoparticles, i.e. matrices of different shapes and sizes, confirmed this phenomenon as shown e.g. by a similar to 10 times higher solid state solubility of DXM in OBMD than in PLGA. DXM-loaded particles of similar to 150 nm prepared by nanoprecipitation in aqueous environment had a drug loading (DL) up to 16 times higher when employing OBMD as matrix compared to PLGA carriers due to enhanced drug retention in the OBMD phase. Importantly, drug relase periods were not altered as the release from films and particles was mainly ruled by the diffusion length as well as matrix degradation rather than the matrix type, which can be assigned to water diffusing into the matrix and breaking up of drug-matrix hydrogen bonds. Overall, the presented design and fabrication scheme showed predictive power and might universally enable the screening of drug/matrix interactions particularly to expand the oligodepsipeptide platform technology, e.g. by varying the depsipeptide side chains, for drug carrier and release systems.}, language = {en} } @article{BrunacciWischkeNaolouetal.2017, author = {Brunacci, Nadia and Wischke, Christian and Naolou, Toufik and Neffe, Axel T. and Lendlein, Andreas}, title = {Influence of surfactants on depsipeptide submicron particle formation}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.11.011}, pages = {61 -- 65}, year = {2017}, abstract = {Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20 kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of M-n= 10 kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-alpha-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900 nm with narrow polydispersity, while in the other cases, a lower size range (250-400 nm, PVA; 300 nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{BaeckemoLiuLendlein2021, author = {B{\"a}ckemo, Johan Dag Valentin and Liu, Yue and Lendlein, Andreas}, title = {Bio-inspired and computer-supported design of modulated shape changes in polymer materials}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00056-6}, pages = {462 -- 469}, year = {2021}, abstract = {The Venus flytrap is a fascinating plant with a finely tuned mechanical bi-stable system, which can switch between mono- and bi-stability. Here, we combine geometrical design of compliant mechanics and the function of shape-memory polymers to enable switching between bi- and mono-stable states. Digital design and modelling using the Chained Beam Constraint Model forecasted two geometries, which were experimentally realized as structured films of cross-linked poly[ethylene-co-(vinyl acetate)] supported by digital manufacturing. Mechanical evaluation confirmed our predicted features. We demonstrated that a shape-memory effect could switch between bi- and mono-stability for the same construct, effectively imitating the Venus flytrap.}, language = {en} } @article{DengWangXuetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Modulation of mesenchymal stem cell migration using programmable polymer sheet actuators}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {46-47}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2020.235}, pages = {2381 -- 2390}, year = {2020}, abstract = {Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 degrees C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 +/- 0.1 vs. 0.57 +/- 0.2 mu m/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential.}, language = {en} } @article{DengWangXuetal.2021, author = {Deng, Zijun and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {31}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00091-4}, pages = {739 -- 744}, year = {2021}, abstract = {Rapid migration of mesenchymal stem cells (MSCs) on device surfaces could support in vivo tissue integration and might facilitate in vitro organoid formation. Here, polydopamine (PDA) is explored as a biofunctional coating to effectively promote MSC motility. It is hypothesized that PDA stimulates fibronectin deposition and in this way enhances integrin-mediated migration capability. The random and directional cell migration was investigated by time-lapse microscopy and gap closure assay respectively, and analysed with softwares as computational tools. A higher amount of deposited fibronectin was observed on PDA substrate, compared to the non-coated substrate. The integrin beta 1 activation and focal adhesion kinase (FAK) phosphorylation at Y397 were enhanced on PDA substrate, but the F-actin cytoskeleton was not altered, suggesting MSC migration on PDA was regulated by integrin initiated FAK signalling. This study strengthens the biofunctionality of PDA coating for regulating stem cells and offering a way of facilitating tissue integration of devices.}, language = {en} } @misc{DengWangXuaetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xua, Xun and Gould, Oliver E. C. and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric sheet actuators with programmable bioinstructivity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51549}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515490}, pages = {9}, year = {2020}, abstract = {Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.}, language = {en} } @article{DengWangXuaetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xua, Xun and Gould, Oliver E. C. and Kratz, Karl and Ma, Nan and Lendlein, Andreas}, title = {Polymeric sheet actuators with programmable bioinstructivity}, series = {PNAS}, volume = {117}, journal = {PNAS}, number = {4}, publisher = {National Academy of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.1910668117}, pages = {1895 -- 1901}, year = {2020}, abstract = {Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSC5). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSC5 are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.}, language = {en} } @article{DengZouWangetal.2019, author = {Deng, Zijun and Zou, Jie and Wang, Weiwei and Nie, Yan and Tung, Wing-Tai and Ma, Nan and Lendlein, Andreas}, title = {Dedifferentiation of mature adipocytes with periodic exposure to cold}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {71}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-199005}, pages = {415 -- 424}, year = {2019}, abstract = {Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells.}, language = {en} } @article{FangGouldLysyakovaetal.2018, author = {Fang, Liang and Gould, Oliver E. C. and Lysyakova, Liudmila and Jiang, Yi and Sauter, Tilman and Frank, Oliver and Becker, Tino and Schossig, Michael and Kratz, Karl and Lendlein, Andreas}, title = {Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {19}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201701362}, pages = {2078 -- 2084}, year = {2018}, abstract = {The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1\% or 21 +/- 1\% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.}, language = {en} } @article{FangYanNoecheletal.2016, author = {Fang, Liang and Yan, Wan and N{\"o}chel, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Programming structural functions in phase-segregated polymers by implementing a defined thermomechanical history}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {102}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2016.08.105}, pages = {54 -- 62}, year = {2016}, abstract = {Unwanted shrinkage behaviors or failure in structural functions such as mechanical strength or deformability of polymeric products related to their thermomechanical history are a major challenge in production of plastics. Here, we address the question whether we can turn this challenge into an opportunity by creating defined thermomechanical histories in polymers, represented by a specific morphology and nanostructure, to equip polymeric shaped bodies with desired functions, e.g. a temperature-memory, by hot, warm or cold deformation into multiblock copolymers having two partially overlapping melting transitions. A copolyesterurethane named PDLCL, consisting of poly(epsilon-caprolactone) (PCL) and poly(omega-pentadecalactone) (PPDL) crystalline domains, exhibiting a pronounced phase-segregated morphology and partially overlapping melting transitions was selected for this study. Different types of PCL and PPDL crystals as well as distinct degrees of orientation in both amorphous and crystalline domains were obtained after deformation at 20 or 40 degrees C and to a lower extent at 60 degrees C. The generated non-isotropic structures were stable at ambient temperature and represent the different stresses stored. Stress-free heating experiments showed that the relaxation in both amorphous and crystalline phases occurred predominantly with melting of PCL crystals. When the switching temperature, which was similar to the applied deformation temperature (temperature-memory), was exceeded in stress-free heating experiments, the implemented thermomechanical history could be reversed. In contrast, during constant-strain heating to 60 degrees C the generated structural features remained almost unchanged. These findings provide insights about the structure function relation in multiblock copolymers with two crystalline phases exhibiting a temperature-memory effect by implementation of specific thermomechanical histories, which might be a general principle for tailoring other functions like mechanical strength or deformability in polymers. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{FarhanBehlKratzetal.2021, author = {Farhan, Muhammad and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00058-4}, pages = {476 -- 482}, year = {2021}, abstract = {Active fibers can serve as artificial muscles in robotics or components of smart textiles. Here, we present an origami hand robot, where single fibers control the reversible movement of the fingers. A recovery/contracting force of 0.2 N with a work capacity of 0.175 kJ kg(-1) was observed in crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, which could enable the bending movement of the fingers by contraction upon heating. The reversible opening of the fingers was attributed to a combination of elastic recovery force of the origami structure and crystallization-induced elongation of the fibers upon cooling.}, language = {en} } @article{FarhanChaudharyNoecheletal.2020, author = {Farhan, Muhammad and Chaudhary, Deeptangshu and N{\"o}chel, Ulrich and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)]}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.202000579}, pages = {8}, year = {2020}, abstract = {Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1\% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.}, language = {en} } @misc{FarhanChaudharyNoecheletal.2020, author = {Farhan, Muhammad and Chaudhary, Deeptangshu and N{\"o}chel, Ulrich and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)]}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-57167}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571679}, pages = {10}, year = {2020}, abstract = {Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1\% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.}, language = {en} } @article{FarhanRudolphNoecheletal.2018, author = {Farhan, Muhammad and Rudolph, Tobias and N{\"o}chel, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(epsilon-caprolactone) Networks and Enable Self-Healing}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030255}, pages = {15}, year = {2018}, abstract = {Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(epsilon-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5-60 wt \% of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to Delta epsilon = 24\% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt \% resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials.}, language = {en} } @article{FarhanRudolphNoecheletal.2017, author = {Farhan, Muhammad and Rudolph, Tobias and N{\"o}chel, Ulrich and Yan, Wan and Kratz, Karl and Lendlein, Andreas}, title = {Noncontinuously Responding Polymeric Actuators}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b11316}, pages = {33559 -- 33564}, year = {2017}, abstract = {Reversible movements of current polymeric actuators stem from the continuous response to signals from a controlling unit, and subsequently cannot be interrupted without stopping or eliminating the input trigger. Here, we present actuators based on cross-linked blends of two crystallizable polymers capable of pausing their movements in a defined manner upon continuous cyclic heating and cooling. This noncontinuous actuation can be adjusted by varying the applied heating and cooling rates. The feasibility of these devices for technological applications was shown in a 140 cycle experiment of free-standing noncontinuous shape shifts, as well as by various demonstrators.}, language = {en} } @article{FedericoNoechelLoewenbergetal.2016, author = {Federico, Stefania and N{\"o}chel, Ulrich and L{\"o}wenberg, Candy and Lendlein, Andreas and Neffe, Axel T.}, title = {Supramolecular hydrogel networks formed by molecular recognition of collagen and a peptide grafted to hyaluronic acid}, series = {Acta biomaterialia}, volume = {38}, journal = {Acta biomaterialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2016.04.018}, pages = {1 -- 10}, year = {2016}, abstract = {The extracellular matrix (ECM) is a nano-structured, highly complex hydrogel, in which the macromolecules are organized primarily by non-covalent interactions. Here, in a biomimetic approach, the decorin-derived collagen-binding peptide LSELRLHNN was grafted to hyaluronic acid (HA) in order to enable the formation of a supramolecular hydrogel network together with collagen. The storage modulus of a mixture of collagen and HA was increased by more than one order of magnitude (G\&\#8242; = 157 Pa) in the presence of the HA-grafted peptide compared to a mixture of collagen and HA (G\&\#8242; = 6 Pa). The collagen fibril diameter was decreased, as quantified using electron microscopy, in the presence of the HA-grafted peptide. Here, the peptide mimicked the function of decorin by spatially organizing collagen. The advantage of this approach is that the non-covalent crosslinks between collagen molecules and the HA chains created by the peptide form a reversible and dynamic hydrogel, which could be employed for a diverse range of applications in regenerative medicine. Statement of Significance Biopolymers of the extracellular matrix (ECM) like collagen or hyaluronan are attractive starting materials for biomaterials. While in biomaterial science covalent crosslinking is often employed, in the native ECM, stabilization and macromolecular organization is primarily based on non-covalent interactions, which allows dynamic changes of the materials. Here, we show that collagen-binding peptides, derived from the small proteoglycan decorin, grafted to hyaluronic acid enable supramolecular stabilization of collagen hydrogels. These hydrogels have storage moduli more than one order of magnitude higher than mixtures of collagen and hyaluronic acid. Furthermore, the peptide supported the structural organization of collagen. Such hydrogels could be employed for a diverse range of applications in regenerative medicine. Furthermore, the rational design helps in the understanding ECM structuring.}, language = {en} } @article{FedericoPiercePilusoetal.2015, author = {Federico, Stefania and Pierce, Benjamin F. and Piluso, Susanna and Wischke, Christian and Lendlein, Andreas and Neffe, Axel T.}, title = {Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201505227}, pages = {10980 -- 10984}, year = {2015}, abstract = {Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.}, language = {en} } @article{FengKelchRickertetal.2004, author = {Feng, Y. and Kelch, S. and Rickert, D. and Fuhrmann, R. and Franke, R. P. and Lendlein, Andreas}, title = {Biokompatible abbaubare Formged{\"a}chtnispolymersysteme als intelligente Implantatmaterialien}, year = {2004}, language = {de} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Y. and Behl, Marc and Lendlein, Andreas}, title = {Reaction behaviour of peptide-based single thiol-thioesters exchange reaction substrate in the presence of externally added thiols}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00041-z}, pages = {402 -- 410}, year = {2021}, abstract = {Identification of patterns in chemical reaction pathways aids in the effective design of molecules for specific applications. Here, we report on model reactions with a water-soluble single thiol-thioester exchange (TTE) reaction substrate, which was designed taking in view biological and medical applications. This substrate consists of the thio-depsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) and does not yield foul-smelling thiol exchange products when compared with aromatic thiol containing single TTE substrates. TDP generates an alpha,omega-dithiol crosslinker in situ in a 'pseudo intramolecular' TTE. Competitive intermolecular TTE of TDP with externally added "basic" thiols increased the crosslinker concentration whilst "acidic" thiols decreased its concentration. TDP could potentially enable in situ bioconjugation and crosslinking applications.}, language = {en} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Yao and Behl, Marc and Lendlein, Andreas}, title = {Thiol-Thioester exchange reactions in precursors enable pH-triggered hydrogel formation}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {22}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.0c01690}, pages = {1875 -- 1884}, year = {2021}, abstract = {Bio-interactive hydrogel formation in situ requires sensory capabilities toward physiologically relevant stimuli. Here, we report on pH-controlled in situ hydrogel formation relying on latent cross-linkers, which transform from pH sensors to reactive molecules. In particular, thiopeptolide/thio-depsipeptides were capable of pH-sensitive thiol-thioester exchange reactions to yield a,co-dithiols, which react with maleimide-functionalized multi-arm polyethylene glycol to polymer networks. Their water solubility and diffusibility qualify thiol/thioester-containing peptide mimetics as sensory precursors to drive in situ localized hydrogel formation with potential applications in tissue regeneration such as treatment of inflamed tissues of the urinary tract.}, language = {en} } @article{FolikumahNeffeBehletal.2019, author = {Folikumah, Makafui Yao and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium}, series = {MRS advances : a journal of the Materials Research Society}, volume = {4}, journal = {MRS advances : a journal of the Materials Research Society}, number = {46-47}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/adv.2019.308}, pages = {2515 -- 2525}, year = {2019}, abstract = {Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. 'Click' reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters.}, language = {en} } @article{FriessLendleinWischke2014, author = {Friess, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Photoinduced synthesis of polyester networks from methacrylate functionalized precursors: analysis of side reactions}, series = {Polymers for advanced technologies}, volume = {25}, journal = {Polymers for advanced technologies}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3313}, pages = {1285 -- 1292}, year = {2014}, abstract = {Polyester networks can be prepared by ultraviolet (UV)-light-induced radical polymerization of methacrylate functionalized oligo(epsilon-caprolactone)s. The properties and functions of the obtained materials depend on defined network structures and may be altered, if crosslinking would occur by side reactions in other positions than the methacrylate endgroups. In order to explore whether and to which extent such side reactions occur, network synthesis as well as related model reactions were performed in the absence of photoinitiator. Hereby precursor structures (linear and four-arm star-shaped) and reaction conditions (in solution and in the melt) were varied. Unspecific side reactions were found only upon extensive UV irradiation for 60min (26 mW cm(-2)) with minor but detectable alterations of physicochemical properties of the networks. The analysis of model reactions suggested minor photolytic cleavage of ester bonds during polymer network synthesis. However, the effect of these side reactions on network properties and functions appeared to be less relevant than an incomplete precursor integration because of a too short UV irradiation for crosslinking. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{FriessLendleinWischke2021, author = {Friess, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Size control of shape switchable micronetworks by fast two-step microfluidic templating}, series = {Journal of materials research}, volume = {36}, journal = {Journal of materials research}, number = {16}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00295-2}, pages = {3248 -- 3257}, year = {2021}, abstract = {Shape-memory polymer micronetworks (MN) are micrometer-sized objects that can switch their outer shape upon external command.This study aims to scale MN sizes to the low micrometer range at very narrow size distributions. In a two-step microfluidic strategy, the specific design of coaxial class capillary devices allowed stabilizing the thread of the dispersed phase to efficiently produce precursor particles in the tip-streaming regime at rates up to similar to 170 kHz and final sizes down to 4 mu m. In a subsequent melt-based microfluidic photocrosslinking of the methacrylate-functionalized oligo(epsilon-caprolactone) precursor material, MN could be produced without particle aggregation. A comprehensive analysis of MN properties illustrated successful crosslinking, semi-crystalline morphology, and a shape-switching functionality for all investigated MN sizes (4, 6, 9, 12, 22 mu m). Such functional micronetworks tailored to and below the dimension of cells can enable future applications in technology and medicine like controlling cell interaction.}, language = {en} } @article{FriessRochSeifertetal.2019, author = {Friess, Fabian and Roch, Toralf and Seifert, Barbara and Lendlein, Andreas and Wischke, Christian}, title = {Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(epsilon-caprolactone)}, series = {International Journal of Pharmaceutics}, volume = {567}, journal = {International Journal of Pharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-5173}, doi = {10.1016/j.ijpharm.2019.118461}, pages = {7}, year = {2019}, abstract = {The effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(epsilon-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of similar to 6, similar to 10, and 13 mu m, loaded with a fluorescent dye by a specific technique of swelling, redispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of similar to 4 as obtained by a phantom elongation epsilon(ph) of similar to 150\%. Uptake studies with a murine macrophages cell line showed shape dependency of phagocytosis for selected conditions when varying particle sizes (similar to 6 and 10 mu m),and shapes (epsilon(ph): 0, 75 or 150\%), cell-particle ratios (1:1, 1:2, 1:10, 1:50), and time points (1-24 h). For larger-sized MNC, there was no significant shape effect on phagocytosis as these particles may associate with more than one cell, thus increasing the possibility of phagocytosis by any of these cells. Accordingly, controlling shape effects on phagocytosis for carriers made from degradable polymers relevant for medical applications requires considering further parameters besides shape, such as kinetic aspects of the exposure and uptake by cells.}, language = {en} } @article{FriessWischkeBehletal.2012, author = {Friess, Fabian and Wischke, Christian and Behl, Marc and Lendlein, Andreas}, title = {Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10372}, pages = {273 -- 279}, year = {2012}, abstract = {Purpose: Polymer networks with adjustable properties prepared from endgroup-functionalized oligoesters by UV-crosslinking in melt have evolved into versatile multifunctional biomaterials. In addition to the molecular weight or architecture of precursors, the reaction conditions for crosslinking are pivotal for the polymer network properties. Crosslinking of precursors in solution may facilitate low-temperature processes and are compared here to networks synthesized in melt. Methods: Oligo(epsilon-caprolactone)-(z) methacrylate (oCL-(z) IEMA) precursors with a linear (z = di) or a four-armed star-shaped (z = tetra) architecture were crosslinked by radical polymerization in melt or in solution with UV irradiation. The thermal, mechanical, and swelling properties of the polymer networks obtained were characterized. Results: Crosslinking in solution resulted in materials with lower Young's moduli (E), lower maximum stress (sigma(max)), and higher elongation at break (epsilon(B)) as determined at 70 degrees C. Polymer networks from 8 kDa star-shaped precursors exhibited poor elasticity when synthesized in the melt, but can be established as stretchable materials with a semi-crystalline morphology, a high gel-content, and a high elongation at break when prepared in solution. Conclusions: The crosslinking condition of methacrylate functionalized precursors significantly affected network properties. For some types of precursors such as star-shaped telechelics, synthesis in solution provided semi-crystalline elastic materials that were not accessible from crosslinking in melt.}, language = {en} } @article{FriessWischkeLendlein2019, author = {Friess, Fabian and Wischke, Christian and Lendlein, Andreas}, title = {Microscopic analysis of shape-shiftable oligo(epsilon-caprolactone)-based particles}, series = {MRS advances}, volume = {4}, journal = {MRS advances}, number = {59-60}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.392}, pages = {3199 -- 3206}, year = {2019}, abstract = {Spherical particles are routinely monitored and described by hydrodynamic diameters determined, e.g., by light scattering techniques. Non-spherical particles such as prolate ellipsoids require alternative techniques to characterize particle size as well as particle shape. In this study, oligo(epsilon-caprolactone) (oCL) based micronetwork (MN) particles with a shape-shifting function based on their shape-memory capability were programmed from spherical to prolate ellipsoidal shape aided by incorporation and stretching in a water-soluble phantom matrix. By applying light microscopy with automated contour detection and aspect ratio analysis, differences in characteristic aspect ratio distributions of non-crosslinked microparticles (MPs) and crosslinked MNs were detected when the degrees of phantom elongation (30-290\%) are increased. The thermally induced shape recovery of programmed MNs starts in the body rather than from the tips of ellipsoids, which may be explained based on local differences in micronetwork deformation. By this approach, fascinating intermediate particle shapes with round bodies and two opposite sharp tips can be obtained, which could be of interest, e.g., in valves or other technical devices, in which the tips allow to temporarily encage the switchable particle in the desired position.}, language = {en} } @article{FriessLendleinWischke2021, author = {Frieß, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Switching microobjects from low to high aspect ratios using a shape-memory effect}, series = {Soft matter}, volume = {17}, journal = {Soft matter}, number = {41}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1744-6848}, doi = {10.1039/d1sm00947h}, pages = {9326 -- 9331}, year = {2021}, abstract = {Spherical particles from shape-memory polymers (SMP) can be stretched to ellipsoids with high aspect ratio (AR) and temporarily stabilized. They can switch back to low AR upon thermal stimulation. Here, the creation of an alternative shape-switching capability of particles from low to high AR is introduced, where a SMP matrix from polyvinyl alcohol (PVA) is used to create crosslinked high AR particles and to program the embedded micrometer-sized particles from a second SMP (oligo(epsilon-caprolactone) micronetworks, MN) with a low switching temperature T-sw. This programming proceeds through shape-recovery of the PVA matrix, from which the MN are harvested by PVA matrix dissolution. The use of a dissolvable SMP matrix may be a general strategy to efficiently create systems with complex moving capabilities.}, language = {en} } @article{GhobadiHeuchelKratzetal.2012, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Simulation of volumetric swelling of degradable poly[(rac-lactide)-co-glycolide] based polyesterurethanes containing different urethane-linkers}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10432}, pages = {293 -- 301}, year = {2012}, abstract = {Aim: The hydrolytic degradation behavior of degradable aliphatic polyester-based polymers is strongly influenced by the uptake or transport of water into the polymer matrix and also the hydrolysis rate of ester bonds. Methods: We examined the volumetric swelling behavior of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based polyurethanes (PLGA-PU) with water contents of 0 wt\%, 2 wt\% and 7 wt\% water at 310 K using a molecular modeling approach. Polymer systems with a number average molecular weight of M-n = 10,126 g.mol(-1) were constructed from PLGA with a lactide content of 67 mol\%, whereby PLGA-PU systems were composed of five PLGA segments with M-n = 2052 g.mol(-1), which were connected via urethane linkers originated from 2,2,4-trimethyl hexamethylene-1,6-diisocyanate (TMDI), hexamethyl-1,6-diisocyanate (HDI), or L-lysine-1,6-diisocyanate (LDI). Results: The calculated densities of the dry PLGA-PU systems were found to be lower than for pure PLGA. The obtained volumetric swelling of the PLGA-PU was depending on the type of urethane linker, whereby all swollen PLGA-PUs contained larger free volume distribution compared to pure PLGA. The mean square displacement curves for dry PLGA and PLGA-PUs showed that urethane linker units reduce the mobility of the polymer chains, while an increase in backbone atoms mobility was found, when water was added to these systems. Consequently, an increased water uptake of PLGA-PU matrices combined with a higher mobility of the chain segments should result in an accelerated hydrolytic chain scission rate in comparison to PLGA. Conclusions: It can be anticipated that the incorporation of urethane linkers might be a helpful tool to adjust the degradation behavior of polyesters.}, language = {en} } @article{GhobadiHeuchelKratzetal.2012, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Influence of different heating regimes on the shape-recovery behavior of poly(L-lactide) in simulated thermomechanical tests}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10440}, pages = {259 -- 264}, year = {2012}, abstract = {Aim: Multifunctional polymer-based biomaterials, which combine degradability with a shape-memory capability and in this way enable the design of actively moving implants such as self-anchoring implants or controlled release systems, have been recently introduced. Of particular interest are approved degradable polymers such as poly(L-lactide) (PLLA), which can be easily functionalized with a shape-memory effect. In the case of semicrystalline PLLA, the glass transition can be utilized as shape-memory switching domain. Methods: In this work we applied a fully atomistic molecular dynamics simulation to study the shape-memory behavior of PLLA. A heating-deformation-cooling programming procedure was applied to atomistic PLLA packing models followed by a recovery module under stress-free conditions allowing the shape recovery. The recovery was simulated by heating the samples from T-low = 250 K to T-high = 500 K with different heating rates beta of 125, 40 and 4 K.ns(-1). Results: We could demonstrate that the obtained strain recovery rate (R-r) was strongly influenced by the applied simulation time and heating rate, whereby R-r values in the range from 46\% to 63\% were achieved. On its own the application of a heating rate of 4 K.ns(-1) enabled us to determine a characteristic switching temperature of T-sw = 473 K for the modeled samples. Conclusions: We anticipate that the atomistic modeling approach presented should be capable of enabling further study of T-sw with respect to the molecular structure of the investigated SMP and therefore could be applied in the context of design and development of new shape-memory (bio) materials.}, language = {en} } @article{GhobadiHeuchelKratzetal.2013, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Simulating the shape-Memory behavior of amorphous switching domains of Poly(L-lactide) by molecular dynamics}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200450}, pages = {1273 -- 1283}, year = {2013}, abstract = {The thermally induced shape-memory effect of polymers is typically characterized by cyclic uniaxial thermomechanical tests. Here, a molecular-dynamics (MD) simulation approach of such a cyclic uniaxial thermomechanical test is presented for amorphous switching domains of poly(L-lactide) (PLLA). Uniaxial deformation of the constructed PLLA models is simulated with a Parinello-Rahman scheme, as well as a pragmatic geometrical approach. We are able to describe two subsequent test cycles using the presented simulation approach. The obtained simulated shape-memory properties in both test cycles are similar and independent of the applied deformation protocols. The simulated PLLA shows high shape fixity ratios (Rf 94\%), but only a moderate shape recovery ratio is obtained (Rr 30\%). Finally, the structural changes during the simulated test are characterized by analysis of the changes in the dihedral angle distributions.}, language = {en} } @article{GhobadiHeuchelKratzetal.2014, author = {Ghobadi, Ehsan and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Atomistic simulation of the shape-memory effect in dry and water swollen Poly[(rac-lactide)-co-glycolide] and copolyester urethanes thereof}, series = {Macromolecular chemistry and physics}, volume = {215}, journal = {Macromolecular chemistry and physics}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300507}, pages = {65 -- 75}, year = {2014}, abstract = {An atomistic molecular dynamics simulation approach is applied to model the influence of urethane linker units as well as the addition of water molecules on the simulated shape-memory properties of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based copolyester urethanes comprising different urethane linkers. The shape-memory performance of these amorphous packing models is explored in a simulated heating-deformation-cooling-heating procedure. Depending on the type of incorporated urethane linker, the mechanical properties of the dry copolyester urethanes are found to be significantly improved compared with PLGA, which can be attributed to the number of intermolecular hydrogen bonds between the urethane units. Good shape-memory properties are observed for all the modeled systems. In the dry state, the shape fixation is found to be improved by implementation of urethane units. After swelling of the copolymer models with water, which results in a reduction of their glass transition temperatures, the relaxation kinetics during unloading and shape recovery are found to be substantially accelerated.}, language = {en} } @article{GrothLendlein2004, author = {Groth, Thomas and Lendlein, Andreas}, title = {In-vivo-Reparatur von Blutgef{\"a}ßen durch alternierende Adsorption von Polyelektrolyten}, year = {2004}, language = {de} } @article{GrothLendlein2004, author = {Groth, Thomas and Lendlein, Andreas}, title = {Layer-by-layer deposition of polyelectrolytes : a versatile tool for the in vivo repair of blood vessels and the preparation of biocompatible implant coatings}, year = {2004}, language = {en} } @article{HauserWodtkeTonderaetal.2019, author = {Hauser, Sandra and Wodtke, Robert and Tondera, Christoph and Wodtke, Johanna and Neffe, Axel T. and Hampe, Jochen and Lendlein, Andreas and L{\"o}ser, Reik and Pietzsch, Jens}, title = {Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials}, series = {ACS biomaterials science \& engineering}, volume = {5}, journal = {ACS biomaterials science \& engineering}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2373-9878}, doi = {10.1021/acsbiomaterials.9b01299}, pages = {5979 -- 5989}, year = {2019}, abstract = {Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used.}, language = {en} } @article{HoffmannMachatschekLendlein2020, author = {Hoffmann, Falk and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Understanding the impact of crystal lamellae organization on small molecule diffusion using a Monte Carlo approach}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {52-53}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2020.386}, pages = {2737 -- 2749}, year = {2020}, abstract = {Many physicochemical processes depend on the diffusion of small molecules through solid materials. While crystallinity in polymers is advantageous with respect to structure performance, diffusion in such materials is difficult to predict. Here, we investigate the impact of crystal morphology and organization on the diffusion of small molecules using a lattice Monte Carlo approach. Interestingly, diffusion determined with this model does not depend on the internal morphology of the semi-crystalline regions. The obtained insight is highly valuable for developing predictive models for all processes in semi-crystalline polymers involving mass transport, like polymer degradation or drug release, and provide design criteria for the time-dependent functional behavior of multifunctional polymer systems.}, language = {en} } @article{HoffmannMachatschekLendlein2022, author = {Hoffmann, Falk and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics}, series = {Journal of materials research : JMR}, volume = {37}, journal = {Journal of materials research : JMR}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {0884-2914}, doi = {10.1557/s43578-022-00495-4}, pages = {1093 -- 1101}, year = {2022}, abstract = {The degradation of polymers is described by mathematical models based on bond cleavage statistics including the decreasing probability of chain cuts with decreasing average chain length. We derive equations for the degradation of chains under a random chain cut and a chain end cut mechanism, which are compared to existing models. The results are used to predict the influence of internal molecular parameters. It is shown that both chain cut mechanisms lead to a similar shape of the mass or molecular mass loss curve. A characteristic time is derived, which can be used to extract the maximum length of soluble fragments l of the polymer. We show that the complete description is needed to extract the degradation rate constant k from the molecular mass loss curve and that l can be used to design polymers that lose less mechanical stability before entering the mass loss phase.}, language = {en} } @article{HommesSchattmannNeffeAhmadetal.2017, author = {Hommes-Schattmann, Paul J. and Neffe, Axel T. and Ahmad, Bilal and Williams, Gareth R. and Vanneaux, Valerie and Menasche, Philippe and Kalfa, David and Lendlein, Andreas}, title = {RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3963}, pages = {1312 -- 1317}, year = {2017}, abstract = {The tissue integration of synthetic polymers can be promoted by displaying RGD peptides at the biointerface with the objective of enhancing colonization of the material by endogenous cells. A firm but flexible attachment of the peptide to the polymer matrix, still allowing interaction with receptors, is therefore of interest. Here, the covalent coupling of flexible physical anchor groups, allowing for temporary immobilization on polymeric surfaces via hydrophobic or dipole-dipole interactions, to a RGD peptide was investigated. For this purpose, a stearate or an oligo(ethylene glycol) (OEG) was attached to GRGDS in 51-69\% yield. The obtained RGD linker constructs were characterized by NMR, IR and MALDI-ToF mass spectrometry, revealing that the commercially available OEG and stearate linkers are in fact mixtures of similar compounds. The RGD linker constructs were co-electrospun with poly(p-dioxanone) (PPDO). After electrospinning, nitrogen could be detected on the surface of the PPDO fibers by X-ray photoelectron spectroscopy. The nitrogen content exceeded the calculated value for the homogeneous material mixture suggesting a pronounced presentation of the peptide on the fiber surface. Increasing amounts of RGD linker constructs in the electrospinning solution did not lead to a detection of an increased amount of peptide on the scaffold surface, suggesting inhomogeneous distribution of the peptide on the PPDO fiber surface. Human adipose-derived stem cells cultured on the patches showed similar viability as when cultured on PPDO containing pristine RGD. The fully characterized RGD linker constructs could serve as valuable tools for the further development of tissue-integrating polymeric scaffolds. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{IzraylitGouldKratzetal.2020, author = {Izraylit, Victor and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the phase-morphology of PLLA-PCL multiblock copolymer/PDLA blends cross-linked using stereocomplexation}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.465}, pages = {699 -- 707}, year = {2020}, abstract = {The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(epsilon-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 - 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance.}, language = {en} } @article{IzraylitHeuchelKratzetal.2021, author = {Izraylit, Victor and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Non-woven shape-memory polymer blend actuators}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {33}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00063-8}, pages = {781 -- 785}, year = {2021}, abstract = {The hierarchical design approach provides various opportunities to adjust the structural performance of polymer materials. Electrospinning processing techniques give access to molecular orientation as a design parameter, which we consider here in view of the shape-memory actuation performance. The aim of this work is to investigate how the reversible strain epsilon'(rev) can be affected by a morphology change from a bulk material to an electrospun mesh. epsilon'(rev) could be increased from 5.5 +/- 0.5\% to 15 +/- 1.8\% for a blend from a multiblock copolymer with poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA) segments with oligo(D-lactide) (ODLA). This study demonstrates an effective design approach for enhancing soft actuator performance, which can be broadly applied in soft robotics and medicine.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes}, series = {European polymer journal}, volume = {137}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109916}, pages = {8}, year = {2020}, abstract = {Sustainable multifunctional alternatives to fossil-derived materials, which can be functionalized and are degradable, can be envisioned by combining naturally derived starting materials with an established polymer design concept. Modularity and chemical flexibility of polyester urethanes (PEU) enable the combination of segments bearing functionalizable moieties and the tailoring of the mechanical and thermal properties. In this work, a PEU multiblock structure was synthesized from naturally derived L-lysine diisocyanate ethyl ester (LDI), poly(L-lactide) diol (PLLA) and N-(2,3-dihydroxypropyl)-maleimide (MID) in a one-step reaction. A maleimide side-chain (MID) provided a reactive site for the catalyst-free coupling of thiols shown for L-cysteine with a yield of 94\%. Physical cross-links were generated by blending the PEU with poly(D-lactide) (PDLA), upon which the PLLA segments of the PEU and the PDLA formed stereocomplexes. Stereocomplexation occurred spontaneously during solution casting and was investigated with WAXS and DSC. Stereocomplex crystallites were observed in the blends, while isotactic PLA crystallization was not observed. The presented material platform with tailorable mechanical properties by blending is of specific interest for engineering biointerfaces of implants or carrier systems for bioactive molecules.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul Jacob and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Alkynyl-functionalized chain-extended PCL for coupling to biological molecules}, series = {European polymer journal}, volume = {136}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109908}, pages = {11}, year = {2020}, abstract = {Chemical functionalization of poly(epsilon-caprolactone) (PCL) enables a molecular integration of additional function. Here, we report an approach to incorporate reactive alkynyl side-groups by synthesizing a chain-extended PCL, where the reactive site is introduced through the covalently functionalizable chain extender 3 (prop-2-yn-1-yloxy)propane-1,2-diol (YPD). Chain-extended PCL with M-w of 101 to 385 kg.mol(-1) were successfully synthesized in a one-pot reaction from PCL-diols with various molar masses, L-lysine ethyl ester diisocyanate (LDI) or trimethyl(hexamethylene)diisocyanate (TMDI), and YPD, in which the density of functionalizable groups and spacing between them can be controlled by the composition of the polymer. The employed diisocyanate compounds and YPD possess an asymmetric structure and form a non-crystallizable segment leaving the PCL crystallites to dominate the material's mechanical properties. The mixed glass transition temperature T-g = - 60 to - 46 degrees C of the PCL/polyurethane amorphous phase maintains the synthesized materials in a highly elastic state at ambient and physiological conditions. Reaction conditions for covalent attachment in copper(I)-catalyzed azide-alkyne-cycloaddition reactions (CuAAC) in solution were optimized in a series of model reactions between the alkyne moieties of the chain-extended PCL and benzyl azide, reaching conversions over 95\% of the alkyne moieties and with yields of up to 94\% for the purified functionalized PCL. This methodology was applied for reaction with the azide-functionalized cell adhesion peptide GRGDS. The required modification of the peptide provides selectivity in the coupling reactions. The obtained results suggest that YPD could potentially be employed as versatile molecular unit for the creation of a variety of functionalizable polyesters as well as polyurethanes and polycarbonates offering efficient and selective click-reactions.}, language = {en} } @article{IzraylitLiuTarazonaetal.2021, author = {Izraylit, Victor and Liu, Yue and Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00107-y}, pages = {850 -- 855}, year = {2021}, abstract = {Supporting the wound healing of soft tissues requires fixation devices becoming more elastic while degrading. To address this unmet need, we designed a blend of degradable multiblock copolymers, which is cross-linked by PLA stereocomplexation combining two soft segments differing substantially in their hydrolytic degradation rate. The degradation path and concomitant structural changes are predicted by Langmuir monolayer technique. The fast hydrolysis of one soft segment leads to a decrease of the total polymer mass at constant physical cross-linking density. The corresponding increase of the average spacing between the network nodes suggests the targeted increase of the blend's flexibility.}, language = {en} } @article{JiangMansfeldFangetal.2018, author = {Jiang, Yi and Mansfeld, Ulrich and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability}, series = {Materials \& design}, volume = {163}, journal = {Materials \& design}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-1275}, doi = {10.1016/j.matdes.2018.12.002}, pages = {10}, year = {2018}, abstract = {Material surfaces with tailored aerophobicity are crucial for applications where gas bubble wettability has to be controlled, e.g., gas storage and transport, electrodes, bioreactors or medical devices. Here, we present switchable underwater aerophobicity of hydrophobic polymeric substrates, which respond to heat with multilevel micro-and nanotopographical changes. The cross-linked poly[ethylene-co-(vinyl acetate)] substrates possess arrays of microcylinders with a nanorough top surface. It is hypothesized that the specific micro-/nanotopography of the surface allows trapping of a water film at the micro interspace and in this way generates the aerophobic behavior. The structured substrates were programmed to a temporarily stable, nanoscale flat substrate showing aerophilic behavior. Upon heating, the topographical changes caused a switch in contact angle from aerophilic to aerophobic for approaching air bubbles. In this way, the initial adhesion of air bubbles to the programmed flat substrate could be turned into repellence for the recovered substrate surface. The temperature at which the repellence of air bubbles starts can be adjusted from 58 +/- 3 degrees C to 73 +/- 3 degrees C by varying the deformation temperature applied during the temperature-memory programming procedure. The presented actively switching polymeric substrates are attractive candidates for applications, where an on-demand gas bubble repellence is advantageous. (c) 2018 Helmholtz-Zentrum Geesthacht, Zentrum fur Material- und Kustenforschung. Published by Elsevier Ltd.}, language = {en} } @article{JiangMansfeldKratzetal.2019, author = {Jiang, Yi and Mansfeld, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memo technology}, series = {MRS Communications}, volume = {9}, journal = {MRS Communications}, number = {1}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2159-6859}, doi = {10.1557/mrc.2019.24}, pages = {181 -- 188}, year = {2019}, abstract = {Temperature-memory technology was utilized to generate flat substrates with a programmable stiffness pattern from cross-linked poly(ethylene-co-vinyl acetate) substrates with cylindrical microstructures. Programmed substrates were obtained by vertical compression at temperatures in the range from 60 to 100 degrees C and subsequent cooling, whereby a flat substrate was achieved by compression at 72 degrees C, as documented by scanning electron microscopy and atomic force microscopy (AFM). AFM nanoindentation experiments revealed that all programmed substrates exhibited the targeted stiffness pattern. The presented technology for generating polymeric substrates with programmable stiffness pattern should be attractive for applications such as touchpads. optical storage, or cell instructive substrates.}, language = {en} } @misc{JiangMansfeldKratzetal.2019, author = {Jiang, Yi and Mansfeld, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Programmable microscale stiffness pattern of flat polymeric substrates by temperature-memory technology}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {9}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-46974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469745}, pages = {181 -- 188}, year = {2019}, abstract = {Temperature-memory technology was utilized to generate flat substrates with a programmable stiffness pattern from cross-linked poly(ethylene-co-vinyl acetate) substrates with cylindrical microstructures. Programmed substrates were obtained by vertical compression at temperatures in the range from 60 to 100 degrees C and subsequent cooling, whereby a flat substrate was achieved by compression at 72 degrees C, as documented by scanning electron microscopy and atomic force microscopy (AFM). AFM nanoindentation experiments revealed that all programmed substrates exhibited the targeted stiffness pattern. The presented technology for generating polymeric substrates with programmable stiffness pattern should be attractive for applications such as touchpads. optical storage, or cell instructive substrates.}, language = {en} } @article{JulichGrunerLoewenbergNeffeetal.2013, author = {Julich-Gruner, Konstanze K. and L{\"o}wenberg, Candy and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Recent trends in the chemistry of shape-memory polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200607}, pages = {527 -- 536}, year = {2013}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of performing complex movements on demand, which makes them interesting candidates for various applications, for example, in biomedicine or aerospace. This trend article highlights current approaches in the chemistry of SMPs, such as tailored segment chemistry to integrate additional functions and novel synthetic routes toward permanent and temporary netpoints. Multiphase polymer networks and multimaterial systems illustrate that SMPs can be constructed as a modular system of different building blocks and netpoints. Future developments are aiming at multifunctional and multistimuli-sensitive SMPs.}, language = {en} } @article{KelchLendleinMuellenetal.2003, author = {Kelch, S. and Lendlein, Andreas and M{\"u}llen, A. and Ridder, U.}, title = {Textile Polymer Scaffolds for Tissue Engineering}, year = {2003}, language = {en} } @article{KelchLendleinMuellenetal.2003, author = {Kelch, S. and Lendlein, Andreas and M{\"u}llen, A. and Ridder, U.}, title = {Textile Polymerger{\"u}ste f{\"u}r das Tissue Engineering}, year = {2003}, language = {de} } @article{KelchLendleinSchulte2004, author = {Kelch, S. and Lendlein, Andreas and Schulte, J.}, title = {Kunststoffe mit Formged{\"a}chtnis : die erstaunlichen F{\"a}higkeiten intelligenter Materialien}, issn = {0344-5690}, year = {2004}, language = {de} } @article{KruegerGengeBrauneWalteretal.2018, author = {Kr{\"u}ger-Genge, A. and Braune, S. and Walter, M. and Krengel, M. and Kratz, K. and K{\"u}pper, J. H. and Lendlein, Andreas and Jung, Friedrich}, title = {Influence of different surface treatments of poly(n-butyl acrylate) networks on fibroblasts adhesion, morphology and viability}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {69}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1-2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189130}, pages = {305 -- 316}, year = {2018}, abstract = {BACKGROUND: Physical and chemical characteristics of implant materials determine the fate of long-term cardiovascular devices. However, there is still a lack of fundamental understanding of the molecular mechanisms occurring in the material-tissue interphase. In a previous study, soft covalently crosslinked poly(n-butyl acrylate) networks (cPnBA) were introduced as sterilizable, non-toxic and immuno-compatible biomaterials with mechanical properties adjustable to blood vessels. Here we study the influence of different surface treatments in particular oxygen plasma modification and fibrinogen deposition as well as a combinatorial approach on the adhesion and viability of fibroblasts. RESULTS: Compared to non-treated cPnBAs the advancing water-contact angles were found to be reduced after all surface modifications (p<0.05, each), while lowest values were observed after the combined surface treatment (OPT+FIB). The latter differed significantly from the single OPT and FIB. The number of adherent fibroblasts and their adherence behavior differed on both pristine cPnBA networks. The fibroblast density on cPnBA04 was 743 +/- 434 cells. mm(-2), was about 6.5 times higher than on cPnBA73 with 115 +/- 73 cells. mm(-2). On cPnBA04 about 20\% of the cells were visible as very small, round and buckled cells while all other cells were in a migrating status. On cPnBA73, nearly 50\% of fibroblasts were visible as very small, round and buckled cells. The surface functionalization either using oxygen plasma treatment or fibrinogen coating led to a significant increase of adherent fibroblasts, particularly the combination of both techniques, for both cPnBA networks. It is noteworthy to mention that the fibrinogen coating overruled the characteristics of the pristine surfaces; here, the fibroblast densities after seeding were identical for both cPnBAnetworks. Thus, the binding rather depended on the fibrinogen coating than on the substrate characteristics anymore. While the integrity of the fibroblasts membrane was comparable for both polymers, the MTS tests showed a decreased metabolic activity of the fibroblasts on cPnBA. CONCLUSION: The applied surface treatments of cPnBA successfully improved the adhesion of viable fibroblasts. Under resting conditions as well as after shearing the highest fibroblast densities were found on surfaces with combined post-treatment.}, language = {en} } @article{KruegerGengeSchulzKratzetal.2018, author = {Kr{\"u}ger-Genge, Anne and Schulz, Christian and Kratz, Karl and Lendlein, Andreas and Jung, Friedrich}, title = {Comparison of two substrate materials used as negative control in endothelialization studies}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {69}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189904}, pages = {437 -- 445}, year = {2018}, abstract = {The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionallycon-fluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking. Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC). On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP. In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies.}, language = {en} } @article{KuhnlaReinthalerBrauneetal.2019, author = {Kuhnla, A. and Reinthaler, Markus and Braune, Steffen and Maier, A. and Pindur, Gerhard and Lendlein, Andreas and Jung, Friedrich}, title = {Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {71}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-199006}, pages = {425 -- 435}, year = {2019}, abstract = {Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3\% +/- 3.3\% to 10.9\% +/- 5.9\%). The maximum induced aggregation decreased with age for ristocetin (from 85.8\% +/- 7.2\% to 75.0\% +/- 7.8\%), ADP (from 88.5\% +/- 4.6\% to 64.8\% +/- 7.3\%) and collagen (from 89.5\% +/- 3.0\% to 64.0\% +/- 4.0\%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans.}, language = {en} } @article{KumarBasuLemkeetal.2016, author = {Kumar, Reddi K. and Basu, Sayantani and Lemke, Horst-Dieter and Jankowski, Joachim and Kratz, Karl and Lendlein, Andreas and Tetali, Sarada D.}, title = {Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152027}, pages = {667 -- 680}, year = {2016}, abstract = {A high cell viability of around 99 +/- 18\% and 99 +/- 5\% was observed when THP-1 cells were cultured in the presence of aqueous extracts of the PEI microparticles in medium A and medium B respectively. The obtained microscopic data suggested that PEI particle extracts have no significant effect on cell death, oxidative stress or differentiation to macrophages. It was further found that the investigated proinflammatory markers in THP-1 cells were not up-regulated. These results are promising with regard to the biocompatibility of PEI microparticles and in a next step the hemocompatibility of the microparticles will be examined.}, language = {en} } @article{KumarHeuchelKratzetal.2018, author = {Kumar, Reddi K. and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas and Jankowski, Joachim and Tetali, Sarada D.}, title = {Effects of extracts prepared from modified porous poly(ether imide) microparticulate absorbers on cytotoxicity, macrophage differentiation and proinflammatory behavior of human monocytic (THP-1) cells}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {69}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1-2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189112}, pages = {175 -- 185}, year = {2018}, abstract = {Remaining uremic toxins in the blood of chronic renal failure patients represent one central challenge in hemodialysis therapies. Highly porous poly(ether imide) (PEI) microparticles have been recently introduced as candidate absorber materials, which show a high absorption capacity for uremic toxins and allow hydrophilic surface modification suitable for minimization of serum protein absorption. In this work, the effects of extracts prepared from PEI microparticles modified by nucleophilic reaction with low molecular weight polyethylene imine (Pei) or potassium hydroxide (KOH), on human monocytic (THP-1) cells are studied. The obtained results suggested that the extracts of Pei and KOH modified PEI absorbers have no negative effect on THP-1 cell viability and do not initiate the critical differentiation towards macrophages. The extracts did not enhance transcript or protein levels of investigated proinflammatory markers in THP-1 cells, namely, TNF alpha, MCP1, IL6 and IL8. Based on these findings such modified PEI microparticles should be qualified for further pre-clinical evaluation i.e. in an in vivo animal experiment.}, language = {en} } @article{LangeBrauneLuetzowetal.2012, author = {Lange, Maik and Braune, Steffen and Luetzow, Karola and Richau, Klaus and Scharnagl, Nico and Weinhart, Marie and Neffe, Axel T. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Surface functionalization of poly(ether imide) membranes with linear, methylated oligoglycerols for reducing thrombogenicity}, series = {Macromolecular rapid communications}, volume = {33}, journal = {Macromolecular rapid communications}, number = {17}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201200426}, pages = {1487 -- 1492}, year = {2012}, abstract = {Materials for biomedical applications are often chosen for their bulk properties. Other requirements such as a hemocompatible surface shall be fulfilled by suitable chemical functionalization. Here we show, that linear, side-chain methylated oligoglycerols (OGMe) are more stable to oxidation than oligo(ethylene glycol) (OEG). Poly(ether imide) (PEI) membranes functionalized with OGMes perform at least as good as, and partially better than, OEG functionalized PEI membranes in view of protein resistance as well as thrombocyte adhesion and activation. Therefore, OGMes are highly potent surface functionalizing molecules for improving the hemocompatibility of polymers.}, language = {en} } @article{LauGossenLendlein2021, author = {Lau, Skadi and Gossen, Manfred and Lendlein, Andreas}, title = {Designing cardiovascular implants taking in view the endothelial basement membrane}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222313120}, pages = {26}, year = {2021}, abstract = {Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.}, language = {en} } @article{LauGossenLendleinetal.2022, author = {Lau, Skadi and Gossen, Manfred and Lendlein, Andreas and Jung, Friedrich}, title = {Differential sensitivity of assays for determining vein endothelial cell senescence}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {81}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-211294}, pages = {191 -- 203}, year = {2022}, abstract = {In vivo endothelialization of polymer-based cardiovascular implant materials is a promising strategy to reduce the risk of platelet adherence and the subsequent thrombus formation and implant failure. However, endothelial cells from elderly patients are likely to exhibit a senescent phenotype that may counteract endothelialization. The senescence status of cells should therefore be investigated prior to implantation of devices designed to be integrated in the blood vessel wall. Here, human umbilical vein endothelial cells (HUVEC) were cultivated up to passage (P) 4, 10 and 26/27 to determine the population doubling time and the senescence status by four different methods. Determination of the senescence-associated beta-galactosidase activity (SA-beta-Gal) was carried out by colorimetric staining and microscopy (i), as well as by photometric quantification (ii), and the expression of senescence-associated nuclear proteins p16 and p21 as well as the proliferation marker Ki67 was assessed by immunostaining (iii), and by flow cytometry (iv). The population doubling time of P27-cells was remarkably greater (103 +/- 65 h) compared to P4-cells (24 +/- 3 h) and P10-cell (37 +/- 15 h). Among the four different methods tested, the photometric SA-beta-Gal activity assay and the flow cytometric determination of p16 and Ki67 were most effective in discriminating P27-cells from P4- and P10-cells. These methods combined with functional endothelial cell analyses might aid predictions on the performance of implant endothelialization in vivo.}, language = {en} } @article{LauLiuMaieretal.2021, author = {Lau, Skadi and Liu, Yue and Maier, Anna and Braune, Steffen and Gossen, Manfred and Neffe, Axel T. and Lendlein, Andreas}, title = {Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {5}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00072-6}, pages = {559 -- 567}, year = {2021}, abstract = {In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials.}, language = {en} } @article{LauMaierBrauneetal.2021, author = {Lau, Skadi and Maier, Anna and Braune, Steffen and Gossen, Manfred and Lendlein, Andreas}, title = {Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {13}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22137006}, pages = {13}, year = {2021}, abstract = {Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT.}, language = {en} } @misc{Lendlein2018, author = {Lendlein, Andreas}, title = {Fabrication of reprogrammable shape-memory polymer actuators for robotics}, series = {Science robotics}, volume = {3}, journal = {Science robotics}, number = {18}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2470-9476}, doi = {10.1126/scirobotics.aat9090}, pages = {2}, year = {2018}, abstract = {Shape-memory polymer actuators, whose actuation geometry and switching temperatures are reprogrammable by physical fabrication schemes, were recently suggested for robotics with the option for self-healing and degradability.}, language = {en} } @article{LendleinBalkTarazonaetal.2019, author = {Lendlein, Andreas and Balk, Maria and Tarazona, Natalia A. and Gould, Oliver E. C.}, title = {Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {20}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.9b01074}, pages = {3627 -- 3640}, year = {2019}, abstract = {Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.}, language = {en} } @article{LendleinGould2019, author = {Lendlein, Andreas and Gould, Oliver E. C.}, title = {Reprogrammable recovery and actuation behaviour of shape-memory polymers}, series = {Nature reviews. Materials}, volume = {4}, journal = {Nature reviews. Materials}, number = {2}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-8437}, doi = {10.1038/s41578-018-0078-8}, pages = {116 -- 133}, year = {2019}, abstract = {Shape memory is the capability of a material to be deformed and fixed into a temporary shape. Recovery of the original shape can then be triggered only by an external stimulus. Shape-memory polymers are highly deformable materials that can be programmed to recover a memorized shape in response to a variety of environmental and spatially localized stimuli as a one-way effect. The shape-memory function can also be generated as a reversible effect enabling actuation behaviour through macroscale deformation and processing, specifically by dictating the macromolecular orientation of actuation units and of the skeleton structure of geometry-determining units in the polymers. Shape-memory polymers can be programmed and reprogrammed into arbitrary shapes. Both recovery and actuation behaviour are reprogrammable. In this Review, we outline the common basis and key differences between the two shape-memory behaviours of polymers in terms of mechanism, fabrication schemes and characterization methods. We discuss which combination of macromolecular architecture and macroscale processing is necessary for coordinated, decentralized and responsive physical behaviour. The extraction of relevant thermomechanical information is described, and design criteria are shown for microscale and macroscale morphologies to gain high levels of recovered or actuation strains as well as on-demand 2D-to-3D shape transformations. Finally, real-world applications and key future challenges are highlighted.}, language = {en} } @article{LendleinHeuchel2021, author = {Lendlein, Andreas and Heuchel, Matthias}, title = {Shape-memory polymers designed in view of thermomechanical energy storage and conversion systems}, series = {ACS central science}, volume = {7}, journal = {ACS central science}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {2374-7951}, doi = {10.1021/acscentsci.1c01032}, pages = {1599 -- 1601}, year = {2021}, language = {en} } @misc{LendleinKelchSchulteetal.2004, author = {Lendlein, Andreas and Kelch, S. and Schulte, J. and Kratz, K.}, title = {Shape-memory polymers}, year = {2004}, language = {en} } @article{LendleinSauter2013, author = {Lendlein, Andreas and Sauter, Tilman}, title = {Shape-memory effect in polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300098}, pages = {1175 -- 1177}, year = {2013}, language = {en} } @article{LiangBehlLendlein2021, author = {Liang, Xiao and Behl, Marc and Lendlein, Andreas}, title = {Dihydroxy terminated teroligomers from morpholine-2,5-diones}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110189}, pages = {9}, year = {2021}, abstract = {Oligodepsipeptides (ODPs) attract increasing attention as degradable materials in controlled drug delivery or as building blocks for nano-carriers. Their strong intermolecular interactions provide high stability. Tailoring the side groups of the amino acid repeating units to achieve a strong affinity to particular drugs allows a high drug-loading capacity. Here we describe synthesis and characterization of dihydroxy terminated teroligodepsipeptides (ter-ODPs) by ring-opening copolymerization (ROP) of three different morpholine-2,5-diones (MDs) in bulk in order to provide a set of teroligomers with structural variation for drug release or transfection. Ter-ODPs with equivalent co-monomer feed ratios were prepared as well as ter-ODPs, in which the co-monomer feed ratio was varied between 9 mol\% and 78 mol\%. Ter-ODPs were synthesized by ROP using 1,1,10,10-tetra-n-butyl-1,10-distanna-2,9,11,18-tetraoxa-5,6,14,15-tetrasulfur-cyclodecane (tin(IV) alkoxide) that was obtained by the reaction of dibutyl tin(II) oxide with 2-hydroxyethyl disulfide. The number average molecular weight (M-n) of ter-ODPs, determined by H-1 NMR and gel permeation chromatography (GPC), ranged between 4000 g center dot mol(-1) and 8600 g center dot mol(-1). Co-monomer compositions in ter-ODPs could be controlled by changing the feed ratio of co-monomers as observed by H-1 NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The amount of remaining monomers as determined by H-1 NMR could be kept below 1 wt\%. Macrocycles as main sources of byproducts as determined from MALDI-TOF-MS measurements were significantly lower as compared to polymerization by Sn(Oct)(2). Glass-transition temperature (T-g) of ter-ODPs ranged between 59 degrees C and 70 degrees C.}, language = {en} } @article{LiangBehlLuetzowetal.2021, author = {Liang, Xiao and Behl, Marc and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Cooligomers from morpholine-2,5-dione and para-dioxanone and catalyst complex SnOct(2)/2-hydroxyethyl sulfide}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {32}, publisher = {Springer}, address = {Heidelberg}, issn = {2059-8521}, doi = {10.1557/s43580-021-00082-5}, pages = {764 -- 768}, year = {2021}, abstract = {Complexes from catalysts and initiator can be used to insert a specific number of additional chemical functional groups in (co)polymers prepared by ring-opening polymerization (ROP) of lactones. We report on the synthesis of cooligomers from sec-butyl-morpholine-2,5-dione (SBMD) and para-dioxanone (PDX) by ROP with varied feed ratios in the bulk using the catalyst complex SnOct(2)/2-hydroxyethyl sulfide. M-n of the cooligomers (determined by GPC) decreased with decreasing SBMD feed ratio from 4200 +/- 420 to 800 +/- 80 g mol(-1). When the feed ratio was reduced from 80 to 50 mol\% the molar ratio of SBMD of the cooligomers (determined by H-1-NMR) remained nearly unchanged between 81 and 86 mol\% and was attributed to a higher reactivity of SBMD. This assumption was confirmed by fractionation of GPC, in which an increase of SBMD with increasing molecular weight was observed. The catalyst/initiator system provides a high potential to create orthogonal building blocks by cleavage of the sulfide bond.}, language = {en} } @article{LiuGouldKratzetal.2020, author = {Liu, Yue and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {Shape-memory actuation of individual micro-/nanofibers}, series = {MRS Advances}, volume = {5}, journal = {MRS Advances}, number = {46-47}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2020.276}, pages = {2391 -- 2399}, year = {2020}, abstract = {Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(epsilon-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of epsilon(rev)= 3.4 +/- 0.1\% and 10.5 +/- 0.1\% were obtained for a single micro (d = 1.0 +/- 0.2 mu m) and nanofiber (d = 300 +/- 100 nm) in cyclic testing between the temperatures 10 and 60 degrees C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix.}, language = {en} } @article{LiuGouldKratzetal.2022, author = {Liu, Yue and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {On demand sequential release of (sub)micron particles controlled by size and temperature}, series = {Small : nano micro}, volume = {18}, journal = {Small : nano micro}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202104621}, pages = {8}, year = {2022}, abstract = {Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 degrees C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 mu m) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D approximate to 1 mu m) incorporated in films at different programming temperatures T-p (50, 65, and 80 degrees C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release.}, language = {en} } @article{LiuGouldRudolphetal.2020, author = {Liu, Yue and Gould, Oliver E. C. and Rudolph, Tobias and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Polymeric microcuboids programmable for temperature-memory}, series = {Macromolecular materials and engineering}, volume = {305}, journal = {Macromolecular materials and engineering}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.202000333}, pages = {7}, year = {2020}, abstract = {Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2\% to 6.7 +/- 0.1\%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics.}, language = {en} } @article{LiuRazzaqRudolphetal.2017, author = {Liu, Yue and Razzaq, Muhammad Yasar and Rudolph, Tobias and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {50}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b02237}, pages = {2518 -- 2527}, year = {2017}, abstract = {Polymeric microdevices bearing features like nonspherical shapes or spatially segregated surface properties are of increasing importance in biological and medical analysis, drug delivery, and bioimaging or microfluidic systems as well as in micromechanics, sensors, information storage, or data carrier devices. Here, a method to fabricate programmable microcuboids with shape-memory capability and the quantification of their recovery at different levels is reported. The method uses the soft lithographic technique to create microcuboids with well-defined sizes and surface properties. Microcuboids having an edge length of 25 mu m and a height of 10 mu m were prepared from cross-linked poly[ethylene-co-(vinyl acetate)] (cPEVA) with different vinyl acetate contents and were programmed by compression with various deformation degrees at elevated temperatures. The microlevel shape-recovery of the cuboidal geometry during heating was monitored by optical microscopy (OM) and atomic force microscopy (AFM) studying the related changes in the projected area (PA) or height, while the nanolevel changes of the nanosurface roughness were investigated by in situ AFM. The shape-memory effect at the microlevel was quantified by the recovery ratio of cuboids (R-r,R-micro), while at the. nanolevel, the recovery ratio of the nanoroughness (R-r,R-nano) was measured. The values of R-r,R-micro,,micro could be tailored in a range from 42 +/- 1\% to 102 +/- 1\% and Rr,nano from 89 +/- 6\% to 136 +/- 21\% depending on the applied compression ratio and the amount of vinyl acetate content in the cPEVA microcuboids.}, language = {en} } @article{LoewenbergTripodoJulichGruneretal.2020, author = {L{\"o}wenberg, Candy and Tripodo, Giuseppe and Julich-Gruner, Konstanze K. and Neffe, Axel T. and Lendlein, Andreas}, title = {Supramolecular gelatin networks based on inclusion complexes}, series = {Macromolecular bioscience}, volume = {20}, journal = {Macromolecular bioscience}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.202000221}, pages = {8}, year = {2020}, abstract = {Hydrogel forming physical networks based on gelatin are an attractive approach toward multifunctional biomaterials with the option of reshaping, self-healing, and stimuli-sensitivity. However, it is challenging to design such gelatin-based hydrogels to be stable at body temperature. Here, gelatin functionalized with desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) side chains is crosslinked with cyclodextrin (CD) dimers under formation of inclusions complexes. The supramolecular networks displayed at room temperature decreased water uptake (200-600 wt\% for DAT-based systems, 200 wt\% for DATT based systems), and increased storage moduli up to 25.6 kPa determined by rheology compared to DAT(T) gelatin. The gel-sol transition temperature increased from 33 up to 42 degrees C. The presented system that is completely based on natural building blocks may form the basis for materials that may potentially respond by dissolution or changes of properties to changes in environmental conditions or to the presence of CD guest molecules.}, language = {en} } @article{LuetzowHommesSchattmannNeffeetal.2018, author = {L{\"u}tzow, Karola and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Ahmad, Bilal and Williams, Gareth R. and Lendlein, Andreas}, title = {Perfluorophenyl azide functionalization of electrospun poly(para-dioxanone)}, series = {Polymers for advanced technologies}, volume = {30}, journal = {Polymers for advanced technologies}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.4331}, pages = {1165 -- 1172}, year = {2018}, abstract = {Strategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier-transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N-hydroxysuccinimide esters on the surface of a PFPA-functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio-)functionalization of PPDO scaffolds.}, language = {en} } @article{LuetzowWeigelLendlein2020, author = {L{\"u}tzow, Karola and Weigel, Thomas and Lendlein, Andreas}, title = {Solvent-based fabrication method for magnetic, shape-memory nanocomposite foams}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2019.422}, pages = {785 -- 795}, year = {2020}, abstract = {This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 degrees C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 mu m to 230 mu m while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 +/- 4\% in a thermochamber at 80 degrees C, and a slightly lower recovery rate of up to 65 +/- 4\% in a magnetic field.}, language = {en} } @article{MachatschekHeuchelLendlein2021, author = {Machatschek, Rainhard Gabriel and Heuchel, Matthias and Lendlein, Andreas}, title = {Thin-layer studies on surface functionalization of polyetherimide}, series = {Journal of materials research : JMR / Materials Research Society}, volume = {37}, journal = {Journal of materials research : JMR / Materials Research Society}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00339-7}, pages = {67 -- 76}, year = {2021}, abstract = {Among the high-performance and engineering polymers, polyimides and the closely related polyetherimide (PEI) stand out by their capability to react with nucleophiles under relatively mild conditions. By targeting the phthalimide groups in the chain backbone, post-functionalization offers a pathway to adjust surface properties such as hydrophilicity, solvent resistance, and porosity. Here, we use ultrathin PEI films on a Langmuir trough as a model system to investigate the surface functionalization with ethylene diamine and tetrakis(4-aminophenyl)porphyrin as multivalent nucleophiles. By means of AFM, Raman spectroscopy, and interfacial rheology, we show that hydrolysis enhances the chemical and mechanical stability of ultrathin films and allows for the formation of EDC/NHS-activated esters. Direct amidation of PEI was achieved in the presence of a Lewis acid catalyst, resulting in free amine groups rather than cross-linking. When comparing amidation with hydrolysis, we find a greater influence of the latter on material properties.}, language = {en} } @article{MachatschekHeuchelLendlein2021, author = {Machatschek, Rainhard Gabriel and Heuchel, Matthias and Lendlein, Andreas}, title = {Hydrolytic stability of polyetherimide investigated in ultrathin films}, series = {Journal of materials research : JMR / Materials Research Society}, volume = {36}, journal = {Journal of materials research : JMR / Materials Research Society}, number = {14}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00267-6}, pages = {2987 -- 2994}, year = {2021}, abstract = {Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis.}, language = {en} } @article{MachatschekLendlein2019, author = {Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Fundamental insights in PLGA degradation from thin film studies}, series = {Journal of controlled release : official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems}, volume = {319}, journal = {Journal of controlled release : official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems}, publisher = {Elsevier}, address = {New York}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.12.044}, pages = {276 -- 284}, year = {2019}, abstract = {Poly(lactide-co-glycolide)s are commercially available degradable implant materials, which are typically selected based on specifications given by the manufacturer, one of which is their molecular weight. Here, we address the question whether variations in the chain length and their distribution affect the degradation behavior of Poly[(rac-lactide)-co-glycolide]s (PDLLGA). The hydrolysis was studied in ultrathin films at the air-water interface in order to rule out any morphological effects. We found that both for purely hydrolytic degradation as well as under enzymatic catalysis, the molecular weight has very little effect on the overall degradation kinetics of PDLLGAs. The quantitative analysis suggested a random scission mechanism. The monolayer experiments showed that an acidic micro-pH does not accelerate the degradation of PDLLGAs, in contrast to alkaline conditions. The degradation experiments were combined with interfacial rheology measurements, which showed a drastic decrease of the viscosity at little mass loss. The extrapolated molecular weight behaved similar to the viscosity, dropping to a value near to the solubility limit of PDLLGA oligomers before mass loss set in. This observation suggests a solubility controlled degradation of PDLLGA. Conclusively, the molecular weight affects the degradation of PDLLGA devices mostly in indirect ways, e.g. by determining their morphology and porosity during fabrication. Our study demonstrates the relevance of the presented Langmuir degradation method for the design of controlled release systems.}, language = {en} } @article{MachatschekSaretiaLendlein2021, author = {Machatschek, Rainhard Gabriel and Saretia, Shivam and Lendlein, Andreas}, title = {Assessing the influence of temperature-memory creation on the degradation of copolyesterurethanes in ultrathin films}, series = {Advanced materials interfaces}, volume = {8}, journal = {Advanced materials interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202001926}, pages = {8}, year = {2021}, abstract = {Copolyesterurethanes (PDLCLs) based on oligo(epsilon-caprolactone) (OCL) and oligo(omega-pentadecalactone) (OPDL) segments are biodegradable thermoplastic temperature-memory polymers. The temperature-memory capability in these polymers with crystallizable control units is implemented by a thermomechanical programming process causing alterations in the crystallite arrangement and chain organization. These morphological changes can potentially affect degradation. Initial observations on the macroscopic level inspire the hypothesis that switching of the controlling units causes an accelerated degradation of the material, resulting in programmable degradation by sequential coupling of functions. Hence, detailed degradation studies on Langmuir films of a PDLCL with 40 wt\% OPDL content are carried out under enzymatic catalysis. The temperature-memory creation procedure is mimicked by compression at different temperatures. The evolution of the chain organization and mechanical properties during the degradation process is investigated by means of polarization-modulated infrared reflection absorption spectroscopy, interfacial rheology and to some extend by X-ray reflectivity. The experiments on PDLCL Langmuir films imply that degradability is not enhanced by thermal switching, as the former depends on the temperature during cold programming. Nevertheless, the thin film experiments show that the leaching of OCL segments does not induce further crystallization of the OPDL segments, which is beneficial for a controlled and predictable degradation.}, language = {en} } @misc{MachatschekSchoeneRaschdorfetal.2019, author = {Machatschek, Rainhard Gabriel and Sch{\"o}ne, Anne-Christin and Raschdorf, Elisa and Ihlenburg, Ramona and Schulz, Burkhard and Lendlein, Andreas}, title = {Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1106}, issn = {1866-8372}, doi = {10.25932/publishup-46975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469755}, pages = {170 -- 180}, year = {2019}, abstract = {Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications.}, language = {en} } @article{MazurekBudzynskaRazzaqBehletal.2019, author = {Mazurek-Budzynska, Magdalena and Razzaq, Muhammad Yasar and Behl, Marc and Lendlein, Andreas}, title = {Shape-Memory Polymers}, series = {Functional Polymers}, journal = {Functional Polymers}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-95987-0}, issn = {2510-3458}, doi = {10.1007/978-3-319-95987-0_18}, pages = {605 -- 663}, year = {2019}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple-and multi-shape effects (TSE/ MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches.}, language = {en} } @article{MazurekBudzyńskaBehlNeumannetal.2022, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Neumann, Richard and Lendlein, Andreas}, title = {4D-actuators by 3D-printing combined with water-based curing}, series = {Materials today. Communications}, volume = {30}, journal = {Materials today. Communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2021.102966}, pages = {7}, year = {2022}, abstract = {The shape and the actuation capability of state of the art robotic devices typically relies on multimaterial systems from a combination of geometry determining materials and actuation components. Here, we present multifunctional 4D-actuators processable by 3D-printing, in which the actuator functionality is integrated into the shaped body. The materials are based on crosslinked poly(carbonate-urea-urethane) networks (PCUU), synthesized in an integrated process, applying reactive extrusion and subsequent water-based curing. Actuation capability could be added to the PCUU, prepared from aliphatic oligocarbonate diol, isophorone diisocyanate (IPDI) and water, in a thermomechanical programming process. When programmed with a strain of epsilon(prog) = 1400\% the PCUU networks exhibited actuation apparent by reversible elongation epsilon'(rev) of up to 22\%. In a gripper a reversible bending epsilon'(rev)((be)(nd)()) in the range of 37-60\% was achieved when the actuation temperature (T-high) was varied between 45 degrees C and 49 degrees C. The integration of actuation and shape formation could be impressively demonstrated in two PCUU-based reversible fastening systems, which were able to hold weights of up to 1.1 kg. In this way, the multifunctional materials are interesting candidate materials for robotic applications where a freedom in shape design and actuation is required as well as for sustainable fastening systems.}, language = {en} } @article{MazurekBudzyńskaBehlRazzaqetal.2019, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Razzaq, Muhammad Yasar and N{\"o}chel, Ulrich and Rokicki, Gabriel and Lendlein, Andreas}, title = {Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment}, series = {Polymer Degradation and Stability}, volume = {161}, journal = {Polymer Degradation and Stability}, publisher = {Elsevier}, address = {Oxford}, issn = {0141-3910}, pages = {283 -- 297}, year = {2019}, abstract = {Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800\%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd.}, language = {en} } @article{MelchertBehlNoecheletal.2012, author = {Melchert, Christian and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Influence of Comesogens on the Thermal and Actuation Properties of 2-tert-Butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone Based Nematic Main-Chain Liquid Crystalline Elastomers}, series = {Macromolecular materials and engineering}, volume = {297}, journal = {Macromolecular materials and engineering}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201200238}, pages = {1203 -- 1212}, year = {2012}, abstract = {Although the shape-changing capabilities of LCEs hold great potential for applications ranging from micropumps to artificial muscles, customization of the LCE functionality to the applications' requirements is still a challenge. It is studied whether the orientation of NMC-LCPs and NMC-LCEs based on 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone can be enhanced by copolymerization with 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone or 2,6-bis[4-(4-pentenyl-oxy)-benzoyl]anthracene. An increasing content of the comonomers stabilizes the nematic phase, which enables a tailoring of T-NI for the NMC-LCP between 45 and 68 degrees C, while for the NMC-LCE T-NI ranges between 69 and 76 degrees C. In addition, NMC-LCE show an increased actuation performance.}, language = {en} } @article{MelchertYongvongsoontornBehletal.2012, author = {Melchert, Christian and Yongvongsoontorn, Nunnarpas and Behl, Marc and Lendlein, Andreas}, title = {Synthesis and characterization of telechelic oligoethers with terminal cinnamylidene acetic acid moieties}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10364}, pages = {185 -- 190}, year = {2012}, abstract = {Purpose: The formation of photoresponsive hydrogels were reported by irradiation of star-shaped poly(ethylene glycol)s with terminal cinnamylidene acetic acid (CAA) groups, which are capable of a photoinduced [2+2] cycloaddition. In this study we explored whether oligo(ethylene glycol) s and oligo(propylene glycol)s of varying molecular architecture (linear or star-shaped) or molecular weights could be functionalized with CAA as terminal groups by esterification or by amide formation. Methods: Oligo(ethylene glycol) (OEG) and oligo(propylene glycol) (OPG) with varying molecular architecture (linear, star-shaped) and weight average molecular weights between 1000 and 5000 g.mol(-1) were functionalized by means of esterification of hydroxyl or amine endgroups with cinnamylidene acetic acid (CAA) or cinnamylidene acetyl chloride (CAC) as telechelic endgroups. The chemical structure, thermal properties, and molecular weights of the oligoethers obtained were determined by NMR spectroscopy, UV spectroscopy, DSC, and MALDI-TOF. Results: CAA-functionalized linear and star-shaped OEGs or OPGs could be obtained with a degree of functionalization higher than 90\%. In MALDI-TOF measurements an increase in Mw of about 150 g.mol(-1) (for each terminal end) after the functionalization reaction was observed. OEGCAA and OPGCAA showed an increase in glass transition temperature (T-g) from about -70 degrees C to -50 degrees C, compared to the unfunctionalized oligoethers. In addition, the melting temperature (T-m) of OEGCAA decreased from about 55 C to 30 degrees C, which can be accounted for by the hampered crystallization of the precursors because of the bulky CAA end groups as well as by the loss of the hydroxyl telechelic end groups. Conclusion: The synthesis of photoresponsive oligoethers containing cinnamylidene acetic acid as telechelic endgroup was reported and high degrees of functionalization could be achieved. Such photosensitive oligomers are promising candidates as reactive precursors, for the preparation of biocompatible high molecular weight polymers and polymer networks.}, language = {en} }