@phdthesis{Reusser2011, author = {Reusser, Dominik Edwin}, title = {Combining smart model diagnostics and effective data collection for snow catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52574}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Complete protection against flood risks by structural measures is impossible. Therefore flood prediction is important for flood risk management. Good explanatory power of flood models requires a meaningful representation of bio-physical processes. Therefore great interest exists to improve the process representation. Progress in hydrological process understanding is achieved through a learning cycle including critical assessment of an existing model for a given catchment as a first step. The assessment will highlight deficiencies of the model, from which useful additional data requirements are derived, giving a guideline for new measurements. These new measurements may in turn lead to improved process concepts. The improved process concepts are finally summarized in an updated hydrological model. In this thesis I demonstrate such a learning cycle, focusing on the advancement of model evaluation methods and more cost effective measurements. For a successful model evaluation, I propose that three questions should be answered: 1) when is a model reproducing observations in a satisfactory way? 2) If model results deviate, of what nature is the difference? And 3) what are most likely the relevant model components affecting these differences? To answer the first two questions, I developed a new method to assess the temporal dynamics of model performance (or TIGER - TIme series of Grouped Errors). This method is powerful in highlighting recurrent patterns of insufficient model behaviour for long simulation periods. I answered the third question with the analysis of the temporal dynamics of parameter sensitivity (TEDPAS). For calculating TEDPAS, an efficient method for sensitivity analysis is necessary. I used such an efficient method called Fourier Amplitude Sensitivity Test, which has a smart sampling scheme. Combining the two methods TIGER and TEDPAS provided a powerful tool for model assessment. With WaSiM-ETH applied to the Weisseritz catchment as a case study, I found insufficient process descriptions for the snow dynamics and for the recession during dry periods in late summer and fall. Focusing on snow dynamics, reasons for poor model performance can either be a poor representation of snow processes in the model, or poor data on snow cover, or both. To obtain an improved data set on snow cover, time series of snow height and temperatures were collected with a cost efficient method based on temperature measurements on multiple levels at each location. An algorithm was developed to simultaneously estimate snow height and cold content from these measurements. Both, snow height and cold content are relevant quantities for spring flood forecasting. Spatial variability was observed at the local and the catchment scale with an adjusted sampling design. At the local scale, samples were collected on two perpendicular transects of 60 m length and analysed with geostatistical methods. The range determined from fitted theoretical variograms was within the range of the sampling design for 80\% of the plots. No patterns were found, that would explain the random variability and spatial correlation at the local scale. At the watershed scale, locations of the extensive field campaign were selected according to a stratified sample design to capture the combined effects of elevation, aspect and land use. The snow height is mainly affected by the plot elevation. The expected influence of aspect and land use was not observed. To better understand the deficiencies of the snow module in WaSiM-ETH, the same approach, a simple degree day model was checked for its capability to reproduce the data. The degree day model was capable to explain the temporal variability for plots with a continuous snow pack over the entire snow season, if parameters were estimated for single plots. However, processes described in the simple model are not sufficient to represent multiple accumulation-melt-cycles, as observed for the lower catchment. Thus, the combined spatio-temporal variability at the watershed scale is not captured by the model. Further tests on improved concepts for the representation of snow dynamics at the Weißeritz are required. From the data I suggest to include at least rain on snow and redistribution by wind as additional processes to better describe spatio-temporal variability. Alternatively an energy balance snow model could be tested. Overall, the proposed learning cycle is a useful framework for targeted model improvement. The advanced model diagnostics is valuable to identify model deficiencies and to guide field measurements. The additional data collected throughout this work helps to get a deepened understanding of the processes in the Weisseritz catchment.}, language = {en} }