@phdthesis{Heck2017, author = {Heck, Christian}, title = {Gold and silver nanolenses self-assembled by DNA origami}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409002}, school = {Universit{\"a}t Potsdam}, pages = {ix, 125}, year = {2017}, abstract = {Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ.}, language = {en} } @phdthesis{Mostafa2024, author = {Mostafa, Amr}, title = {DNA origami nanoforks: A platform for cytochrome c single molecule surface enhanced Raman spectroscopy}, doi = {10.25932/publishup-63548}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-635482}, school = {Universit{\"a}t Potsdam}, pages = {xi, 90, x}, year = {2024}, abstract = {This thesis presents a comprehensive exploration of the application of DNA origami nanofork antennas (DONAs) in the field of spectroscopy, with a particular focus on the structural analysis of Cytochrome C (CytC) at the single-molecule level. The research encapsulates the design, optimization, and application of DONAs in enhancing the sensitivity and specificity of Raman spectroscopy, thereby offering new insights into protein structures and interactions. The initial phase of the study involved the meticulous optimization of DNA origami structures. This process was pivotal in developing nanoscale tools that could significantly enhance the capabilities of Raman spectroscopy. The optimized DNA origami nanoforks, in both dimer and aggregate forms, demonstrated an enhanced ability to detect and analyze molecular vibrations, contributing to a more nuanced understanding of protein dynamics. A key aspect of this research was the comparative analysis between the dimer and aggregate forms of DONAs. This comparison revealed that while both configurations effectively identified oxidation and spin states of CytC, the aggregate form offered a broader range of detectable molecular states due to its prolonged signal emission and increased number of molecules. This extended duration of signal emission in the aggregates was attributed to the collective hotspot area, enhancing overall signal stability and sensitivity. Furthermore, the study delved into the analysis of the Amide III band using the DONA system. Observations included a transient shift in the Amide III band's frequency, suggesting dynamic alterations in the secondary structure of CytC. These shifts, indicative of transitions between different protein structures, were crucial in understanding the protein's functional mechanisms and interactions. The research presented in this thesis not only contributes significantly to the field of spectroscopy but also illustrates the potential of interdisciplinary approaches in biosensing. The use of DNA origami-based systems in spectroscopy has opened new avenues for research, offering a detailed and comprehensive understanding of protein structures and interactions. The insights gained from this research are expected to have lasting implications in scientific fields ranging from drug development to the study of complex biochemical pathways. This thesis thus stands as a testament to the power of integrating nanotechnology, biochemistry, and spectroscopic techniques in addressing complex scientific questions.}, language = {en} } @phdthesis{Sarhan2019, author = {Sarhan, Radwan Mohamed}, title = {Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy}, doi = {10.25932/publishup-43330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433304}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis.}, language = {en} }