@phdthesis{Bajerski2013, author = {Bajerski, Felizitas}, title = {Bacterial communities in glacier forefields of the Larsemann Hills, East Antarctica : structure, development \& adaptation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67424}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Antarctic glacier forfields are extreme environments and pioneer sites for ecological succession. The Antarctic continent shows microbial community development as a natural laboratory because of its special environment, geographic isolation and little anthropogenic influence. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats and new terrain is becoming exposed to soil formation and accessible for microbial colonisation. This study aims to understand the structure and development of glacier forefield bacterial communities, especially how soil parameters impact the microorganisms and how those are adapted to the extreme conditions of the habitat. To this effect, a combination of cultivation experiments, molecular, geophysical and geochemical analysis was applied to examine two glacier forfields of the Larsemann Hills, East Antarctica. Culture-independent molecular tools such as terminal restriction length polymorphism (T-RFLP), clone libraries and quantitative real-time PCR (qPCR) were used to determine bacterial diversity and distribution. Cultivation of yet unknown species was carried out to get insights in the physiology and adaptation of the microorganisms. Adaptation strategies of the microorganisms were studied by determining changes of the cell membrane phospholipid fatty acid (PLFA) inventory of an isolated bacterium in response to temperature and pH fluctuations and by measuring enzyme activity at low temperature in environmental soil samples. The two studied glacier forefields are extreme habitats characterised by low temperatures, low water availability and small oligotrophic nutrient pools and represent sites of different bacterial succession in relation to soil parameters. The investigated sites showed microbial succession at an early step of soil formation near the ice tongue in comparison to closely located but rather older and more developed soil from the forefield. At the early step the succession is influenced by a deglaciation-dependent areal shift of soil parameters followed by a variable and prevalently depth-related distribution of the soil parameters that is driven by the extreme Antarctic conditions. The dominant taxa in the glacier forefields are Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria and Chloroflexi. The connection of soil characteristics with bacterial community structure showed that soil parameter and soil formation along the glacier forefield influence the distribution of certain phyla. In the early step of succession the relative undifferentiated bacterial diversity reflects the undifferentiated soil development and has a high potential to shift according to past and present environmental conditions. With progressing development environmental constraints such as water or carbon limitation have a greater influence. Adapting the culturing conditions to the cold and oligotrophic environment, the number of culturable heterotrophic bacteria reached up to 108 colony forming units per gram soil and 148 isolates were obtained. Two new psychrotolerant bacteria, Herbaspirillum psychrotolerans PB1T and Chryseobacterium frigidisoli PB4T, were characterised in detail and described as novel species in the family of Oxalobacteraceae and Flavobacteriaceae, respectively. The isolates are able to grow at low temperatures tolerating temperature fluctuations and they are not specialised to a certain substrate, therefore they are well-adapted to the cold and oligotrophic environment. The adaptation strategies of the microorganisms were analysed in environmental samples and cultures focussing on extracellular enzyme activity at low temperature and PLFA analyses. Extracellular phosphatases (pH 11 and pH 6.5), β-glucosidase, invertase and urease activity were detected in the glacier forefield soils at low temperature (14°C) catalysing the conversion of various compounds providing necessary substrates and may further play a role in the soil formation and total carbon turnover of the habitat. The PLFA analysis of the newly isolated species C. frigidisoli showed that the cold-adapted strain develops different strategies to maintain the cell membrane function under changing environmental conditions by altering the PLFA inventory at different temperatures and pH values. A newly discovered fatty acid, which was not found in any other microorganism so far, significantly increased at decreasing temperature and low pH and thus plays an important role in the adaption of C. frigidisoli. This work gives insights into the diversity, distribution and adaptation mechanisms of microbial communities in oligotrophic cold-affected soils and shows that Antarctic glacier forefields are suitable model systems to study bacterial colonisation in connection to soil formation.}, language = {en} } @phdthesis{Krummenauer2022, author = {Krummenauer, Linda}, title = {Global heat adaptation among urban populations and its evolution under different climate futures}, doi = {10.25932/publishup-55929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559294}, school = {Universit{\"a}t Potsdam}, pages = {xix, 161}, year = {2022}, abstract = {Heat and increasing ambient temperatures under climate change represent a serious threat to human health in cities. Heat exposure has been studied extensively at a global scale. Studies comparing a defined temperature threshold with the future daytime temperature during a certain period of time, had concluded an increase in threat to human health. Such findings however do not explicitly account for possible changes in future human heat adaptation and might even overestimate heat exposure. Thus, heat adaptation and its development is still unclear. Human heat adaptation refers to the local temperature to which populations are adjusted to. It can be inferred from the lowest point of the U- or V-shaped heat-mortality relationship (HMR), the Minimum Mortality Temperature (MMT). While epidemiological studies inform on the MMT at the city scale for case studies, a general model applicable at the global scale to infer on temporal change in MMTs had not yet been realised. The conventional approach depends on data availability, their robustness, and on the access to daily mortality records at the city scale. Thorough analysis however must account for future changes in the MMT as heat adaptation happens partially passively. Human heat adaptation consists of two aspects: (1) the intensity of the heat hazard that is still tolerated by human populations, meaning the heat burden they can bear and (2) the wealth-induced technological, social and behavioural measures that can be employed to avoid heat exposure. The objective of this thesis is to investigate and quantify human heat adaptation among urban populations at a global scale under the current climate and to project future adaptation under climate change until the end of the century. To date, this has not yet been accomplished. The evaluation of global heat adaptation among urban populations and its evolution under climate change comprises three levels of analysis. First, using the example of Germany, the MMT is calculated at the city level by applying the conventional method. Second, this thesis compiles a data pool of 400 urban MMTs to develop and train a new model capable of estimating MMTs on the basis of physical and socio-economic city characteristics using multivariate non-linear multivariate regression. The MMT is successfully described as a function of the current climate, the topography and the socio-economic standard, independently of daily mortality data for cities around the world. The city-specific MMT estimates represents a measure of human heat adaptation among the urban population. In a final third analysis, the model to derive human heat adaptation was adjusted to be driven by projected climate and socio-economic variables for the future. This allowed for estimation of the MMT and its change for 3 820 cities worldwide for different combinations of climate trajectories and socio-economic pathways until 2100. The knowledge on the evolution of heat adaptation in the future is a novelty as mostly heat exposure and its future development had been researched. In this work, changes in heat adaptation and exposure were analysed jointly. A wide range of possible health-related outcomes up to 2100 was the result, of which two scenarios with the highest socio-economic developments but opposing strong warming levels were highlighted for comparison. Strong economic growth based upon fossil fuel exploitation is associated with a high gain in heat adaptation, but may not be able to compensate for the associated negative health effects due to increased heat exposure in 30\% to 40\% of the cities investigated caused by severe climate change. A slightly less strong, but sustainable growth brings moderate gains in heat adaptation but a lower heat exposure and exposure reductions in 80\% to 84\% of the cities in terms of frequency (number of days exceeding the MMT) and intensity (magnitude of the MMT exceedance) due to a milder global warming. Choosing a 2 ° C compatible development by 2100 would therefore lower the risk of heat-related mortality at the end of the century. In summary, this thesis makes diverse and multidisciplinary contributions to a deeper understanding of human adaptation to heat under the current and the future climate. It is one of the first studies to carry out a systematic and statistical analysis of urban characteristics which are useful as MMT drivers to establish a generalised model of human heat adaptation, applicable at the global level. A broad range of possible heat-related health options for various future scenarios was shown for the first time. This work is of relevance for the assessment of heat-health impacts in regions where mortality data are not accessible or missing. The results are useful for health care planning at the meso- and macro-level and to urban- and climate change adaptation planning. Lastly, beyond having met the posed objective, this thesis advances research towards a global future impact assessment of heat on human health by providing an alternative method of MMT estimation, that is spatially and temporally flexible in its application.}, language = {en} } @phdthesis{RodriguezCubillos2018, author = {Rodriguez Cubillos, Andres Eduardo}, title = {Understanding the impact of heterozygosity on metabolism, growth and hybrid necrosis within a local Arabidopsis thaliana collection site}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416758}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2018}, abstract = {Plants are unable to move away from unwanted environments and therefore have to locally adapt to changing conditions. Arabidopsis thaliana (Arabidopsis), a model organism in plant biology, has been able to rapidly colonize a wide spectrum of environments with different biotic and abiotic challenges. In recent years, natural variation in Arabidopsis has shown to be an excellent resource to study genes underlying adaptive traits and hybridization's impact on natural diversity. Studies on Arabidopsis hybrids have provided information on the genetic basis of hybrid incompatibilities and heterosis, as well as inheritance patterns in hybrids. However, previous studies have focused mainly on global accessions and yet much remains to be known about variation happening within a local growth habitat. In my PhD, I investigated the impact of heterozygosity at a local collection site of Arabidopsis and its role in local adaptation. I focused on two different projects, both including hybrids among Arabidopsis individuals collected around T{\"u}bingen in Southern Germany. The first project sought to understand the impact of hybridization on metabolism and growth within a local Arabidopsis collection site. For this, the inheritance patterns in primary and secondary metabolism, together with rosette size of full diallel crosses among seven parents originating from Southern Germany were analyzed. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed pronounced non-additive inheritance patterns. In addition, defense metabolites, mainly glucosinolates, displayed the highest degree of variation from the midparent values and were positively correlated with a proxy for plant size. In the second project, the role of ACCELERATED CELL DEATH 6 (ACD6) in the defense response pathway of Arabidopsis necrotic hybrids was further characterized. Allelic interactions of ACD6 have been previously linked to hybrid necrosis, both among global and local Arabidopsis accessions. Hence, I characterized the early metabolic and ionic changes induced by ACD6, together with marker gene expression assays of physiological responses linked to its activation. An upregulation of simple sugars and metabolites linked to non-enzymatic antioxidants and the TCA cycle were detected, together with putrescine and acids linked to abiotic stress responses. Senescence was found to be induced earlier in necrotic hybrids and cytoplasmic calcium signaling was unaffected in response to temperature. In parallel, GFP-tagged constructs of ACD6 were developed. This work therefore gave novel insights on the role of heterozygosity in natural variation and adaptation and expanded our current knowledge on the physiological and molecular responses associated with ACD6 activation.}, language = {en} } @phdthesis{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Understanding and predicting global change impacts on migratory birds}, doi = {10.25932/publishup-43925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439256}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 153}, year = {2019}, abstract = {This is a publication-based dissertation comprising three original research stud-ies (one published, one submitted and one ready for submission; status March 2019). The dissertation introduces a generic computer model as a tool to investigate the behaviour and population dynamics of animals in cyclic environments. The model is further employed for analysing how migratory birds respond to various scenarios of altered food supply under global change. Here, ecological and evolutionary time-scales are considered, as well as the biological constraints and trade-offs the individual faces, which ultimately shape response dynamics at the population level. Further, the effect of fine-scale temporal patterns in re-source supply are studied, which is challenging to achieve experimentally. My findings predict population declines, altered behavioural timing and negative carry-over effects arising in migratory birds under global change. They thus stress the need for intensified research on how ecological mechanisms are affected by global change and for effective conservation measures for migratory birds. The open-source modelling software created for this dissertation can now be used for other taxa and related research questions. Overall, this thesis improves our mechanistic understanding of the impacts of global change on migratory birds as one prerequisite to comprehend ongoing global biodiversity loss. The research results are discussed in a broader ecological and scientific context in a concluding synthesis chapter.}, language = {en} } @phdthesis{Waha2012, author = {Waha, Katharina}, title = {Climate change impacts on agricultural vegetation in sub-Saharan Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64717}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Agriculture is one of the most important human activities providing food and more agricultural goods for seven billion people around the world and is of special importance in sub-Saharan Africa. The majority of people depends on the agricultural sector for their livelihoods and will suffer from negative climate change impacts on agriculture until the middle and end of the 21st century, even more if weak governments, economic crises or violent conflicts endanger the countries' food security. The impact of temperature increases and changing precipitation patterns on agricultural vegetation motivated this thesis in the first place. Analyzing the potentials of reducing negative climate change impacts by adapting crop management to changing climate is a second objective of the thesis. As a precondition for simulating climate change impacts on agricultural crops with a global crop model first the timing of sowing in the tropics was improved and validated as this is an important factor determining the length and timing of the crops´ development phases, the occurrence of water stress and final crop yield. Crop yields are projected to decline in most regions which is evident from the results of this thesis, but the uncertainties that exist in climate projections and in the efficiency of adaptation options because of political, economical or institutional obstacles have to be considered. The effect of temperature increases and changing precipitation patterns on crop yields can be analyzed separately and varies in space across the continent. Southern Africa is clearly the region most susceptible to climate change, especially to precipitation changes. The Sahel north of 13° N and parts of Eastern Africa with short growing seasons below 120 days and limited wet season precipitation of less than 500 mm are also vulnerable to precipitation changes while in most other part of East and Central Africa, in contrast, the effect of temperature increase on crops overbalances the precipitation effect and is most pronounced in a band stretching from Angola to Ethiopia in the 2060s. The results of this thesis confirm the findings from previous studies on the magnitude of climate change impact on crops in sub-Saharan Africa but beyond that helps to understand the drivers of these changes and the potential of certain management strategies for adaptation in more detail. Crop yield changes depend on the initial growing conditions, on the magnitude of climate change, and on the crop, cropping system and adaptive capacity of African farmers which is only now evident from this comprehensive study for sub-Saharan Africa. Furthermore this study improves the representation of tropical cropping systems in a global crop model and considers the major food crops cultivated in sub-Saharan Africa and climate change impacts throughout the continent.}, language = {en} }