@phdthesis{Meyer2015, author = {Meyer, Andreas}, title = {Data perspective in business process management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84806}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 362}, year = {2015}, abstract = {Gesch{\"a}ftsprozessmanagement ist ein strukturierter Ansatz zur Modellierung, Analyse, Steuerung und Ausf{\"u}hrung von Gesch{\"a}ftsprozessen, um Gesch{\"a}ftsziele zu erreichen. Es st{\"u}tzt sich dabei auf konzeptionelle Modelle, von denen Prozessmodelle am weitesten verbreitet sind. Prozessmodelle beschreiben wer welche Aufgabe auszuf{\"u}hren hat, um das Gesch{\"a}ftsziel zu erreichen, und welche Informationen daf{\"u}r ben{\"o}tigt werden. Damit beinhalten Prozessmodelle Informationen {\"u}ber den Kontrollfluss, die Zuweisung von Verantwortlichkeiten, den Datenfluss und Informationssysteme. Die Automatisierung von Gesch{\"a}ftsprozessen erh{\"o}ht die Effizienz der Arbeitserledigung und wird durch Process Engines unterst{\"u}tzt. Daf{\"u}r werden jedoch Informationen {\"u}ber den Kontrollfluss, die Zuweisung von Verantwortlichkeiten f{\"u}r Aufgaben und den Datenfluss ben{\"o}tigt. W{\"a}hrend aktuelle Process Engines die ersten beiden Informationen weitgehend automatisiert verarbeiten k{\"o}nnen, m{\"u}ssen Daten manuell implementiert und gewartet werden. Dem entgegen verspricht ein modell-getriebenes Behandeln von Daten eine vereinfachte Implementation in der Process Engine und verringert gleichzeitig die Fehleranf{\"a}lligkeit dank einer graphischen Visualisierung und reduziert den Entwicklungsaufwand durch Codegenerierung. Die vorliegende Dissertation besch{\"a}ftigt sich mit der Modellierung, der Analyse und der Ausf{\"u}hrung von Daten in Gesch{\"a}ftsprozessen. Als formale Basis f{\"u}r die Prozessausf{\"u}hrung wird ein konzeptuelles Framework f{\"u}r die Integration von Prozessen und Daten eingef{\"u}hrt. Dieses Framework wird durch operationelle Semantik erg{\"a}nzt, die mittels einem um Daten erweiterten Petrinetz-Mapping vorgestellt wird. Die modellgetriebene Ausf{\"u}hrung von Daten muss komplexe Datenabh{\"a}ngigkeiten, Prozessdaten und den Datenaustausch ber{\"u}cksichtigen. Letzterer tritt bei der Kommunikation zwischen mehreren Prozessteilnehmern auf. Diese Arbeit nutzt Konzepte aus dem Bereich der Datenbanken und {\"u}berf{\"u}hrt diese ins Gesch{\"a}ftsprozessmanagement, um Datenoperationen zu unterscheiden, um Abh{\"a}ngigkeiten zwischen Datenobjekten des gleichen und verschiedenen Typs zu spezifizieren, um modellierte Datenknoten sowie empfangene Nachrichten zur richtigen laufenden Prozessinstanz zu korrelieren und um Nachrichten f{\"u}r die Prozess{\"u}bergreifende Kommunikation zu generieren. Der entsprechende Ansatz ist nicht auf eine bestimmte Prozessbeschreibungssprache begrenzt und wurde prototypisch implementiert. Die Automatisierung der Datenbehandlung in Gesch{\"a}ftsprozessen erfordert entsprechend annotierte und korrekte Prozessmodelle. Als Unterst{\"u}tzung zur Datenannotierung f{\"u}hrt diese Arbeit einen Algorithmus ein, welcher Informationen {\"u}ber Datenknoten, deren Zust{\"a}nde und Datenabh{\"a}ngigkeiten aus Kontrollflussinformationen extrahiert und die Prozessmodelle entsprechend annotiert. Allerdings k{\"o}nnen gew{\"o}hnlich nicht alle erforderlichen Informationen aus Kontrollflussinformationen extrahiert werden, da detaillierte Angaben {\"u}ber m{\"o}gliche Datenmanipulationen fehlen. Deshalb sind weitere Prozessmodellverfeinerungen notwendig. Basierend auf einer Menge von Objektlebenszyklen kann ein Prozessmodell derart verfeinert werden, dass die in den Objektlebenszyklen spezifizierten Datenmanipulationen automatisiert in ein Prozessmodell {\"u}berf{\"u}hrt werden k{\"o}nnen. Prozessmodelle stellen eine Abstraktion dar. Somit fokussieren sie auf verschiedene Teilbereiche und stellen diese im Detail dar. Solche Detailbereiche sind beispielsweise die Kontrollflusssicht und die Datenflusssicht, welche oft durch Aktivit{\"a}ts-zentrierte beziehungsweise Objekt-zentrierte Prozessmodelle abgebildet werden. In der vorliegenden Arbeit werden Algorithmen zur Transformation zwischen diesen Sichten beschrieben. Zur Sicherstellung der Modellkorrektheit wird das Konzept der „weak conformance" zur {\"U}berpr{\"u}fung der Konsistenz zwischen Objektlebenszyklen und dem Prozessmodell eingef{\"u}hrt. Dabei darf das Prozessmodell nur Datenmanipulationen enthalten, die auch in einem Objektlebenszyklus spezifiziert sind. Die Korrektheit wird mittels Soundness-{\"U}berpr{\"u}fung einer hybriden Darstellung ermittelt, so dass Kontrollfluss- und Datenkorrektheit integriert {\"u}berpr{\"u}ft werden. Um eine korrekte Ausf{\"u}hrung des Prozessmodells zu gew{\"a}hrleisten, m{\"u}ssen gefundene Inkonsistenzen korrigiert werden. Daf{\"u}r werden f{\"u}r jede Inkonsistenz alternative Vorschl{\"a}ge zur Modelladaption identifiziert und vorgeschlagen. Zusammengefasst, unter Einsatz der Ergebnisse dieser Dissertation k{\"o}nnen Gesch{\"a}ftsprozesse modellgetrieben ausgef{\"u}hrt werden unter Ber{\"u}cksichtigung sowohl von Daten als auch den zuvor bereits unterst{\"u}tzten Perspektiven bez{\"u}glich Kontrollfluss und Verantwortlichkeiten. Dabei wird die Modellerstellung teilweise mit automatisierten Algorithmen unterst{\"u}tzt und die Modellkonsistenz durch Datenkorrektheits{\"u}berpr{\"u}fungen gew{\"a}hrleistet.}, language = {en} } @phdthesis{Mitzscherling2015, author = {Mitzscherling, Steffen}, title = {Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80833}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2015}, abstract = {This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back.}, language = {en} } @phdthesis{Mucha2015, author = {Mucha, Anne}, title = {Temporal interpretation and cross-linguistic variation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85935}, school = {Universit{\"a}t Potsdam}, pages = {x, 249}, year = {2015}, abstract = {This thesis investigates temporal and aspectual reference in the typologically unrelated African languages Hausa (Chadic, Afro-Asiatic) and Medumba (Grassfields Bantu). It argues that Hausa is a genuinely tenseless language and compares the interpretation of temporally unmarked sentences in Hausa to that of morphologically tenseless sentences in Medumba, where tense marking is optional and graded. The empirical behavior of the optional temporal morphemes in Medumba motivates an analysis as existential quantifiers over times and thus provides new evidence suggesting that languages vary in whether their (past) tense is pronominal or quantificational (see also Sharvit 2014). The thesis proposes for both Hausa and Medumba that the alleged future tense marker is a modal element that obligatorily combines with a prospective future shifter (which is covert in Medumba). Cross-linguistic variation in whether or not a future marker is compatible with non-future interpretation is proposed to be predictable from the aspectual architecture of the given language.}, language = {en} } @phdthesis{Mulyukova2015, author = {Mulyukova, Elvira}, title = {Stability of the large low shear velocity provinces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82228}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2015}, abstract = {We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields.}, language = {en} } @phdthesis{Neugebauer2015, author = {Neugebauer, Ina}, title = {Reconstructing climate from the Dead Sea sediment record using high-resolution micro-facies analyses}, series = {Dissertation}, journal = {Dissertation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85266}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 97, XXIII}, year = {2015}, abstract = {The sedimentary record of the Dead Sea is a key archive for reconstructing climate in the eastern Mediterranean region, as it stores the environmental and tectonic history of the Levant for the entire Quaternary. Moreover, the lake is located at the boundary between Mediterranean sub-humid to semi-arid and Saharo-Arabian hyper-arid climates, so that even small shifts in atmospheric circulation are sensitively recorded in the sediments. This DFG-funded doctoral project was carried out within the ICDP Dead Sea Deep Drilling Project (DSDDP) that intended to gain the first long, continuous and high-resolution sediment core from the deep Dead Sea basin. The drilling campaign was performed in winter 2010-11 and more than 700 m of sediments were recovered. The main aim of this thesis was (1) to establish the lithostratigraphic framework for the ~455 m long sediment core from the deep Dead Sea basin and (2) to apply high-resolution micro-facies analyses for reconstructing and better understanding climate variability from the Dead Sea sediments. Addressing the first aim, the sedimentary facies of the ~455 m long deep-basin core 5017-1 were described in great detail and characterised through continuous overview-XRF element scanning and magnetic susceptibility measurements. Three facies groups were classified: (1) the marl facies group, (2) the halite facies group and (3) a group involving different expressions of massive, graded and slumped deposits including coarse clastic detritus. Core 5017-1 encompasses a succession of four main lithological units. Based on first radiocarbon and U-Th ages and correlation of these units to on-shore stratigraphic sections, the record comprises the last ca 220 ka, i.e. the upper part of the Amora Formation (parts of or entire penultimate interglacial and glacial), the last interglacial Samra Fm. (~135-75 ka), the last glacial Lisan Fm. (~75-14 ka) and the Holocene Ze'elim Formation. A major advancement of this record is that, for the first time, also transitional intervals were recovered that are missing in the exposed formations and that can now be studied in great detail. Micro-facies analyses involve a combination of high-resolution microscopic thin section analysis and µXRF element scanning supported by magnetic susceptibility measurements. This approach allows identifying and characterising micro-facies types, detecting event layers and reconstructing past climate variability with up to seasonal resolution, given that the analysed sediments are annually laminated. Within this thesis, micro-facies analyses, supported by further sedimentological and geochemical analyses (grain size, X-ray diffraction, total organic carbon and calcium carbonate contents) and palynology, were applied for two time intervals: (1) The early last glacial period ~117-75 ka was investigated focusing on millennial-scale hydroclimatic variations and lake level changes recorded in the sediments. Thereby, distinguishing six different micro-facies types with distinct geochemical and sedimentological characteristics allowed estimating relative lake level and water balance changes of the lake. Comparison of the results to other records in the Mediterranean region suggests a close link of the hydroclimate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern hemisphere ice sheets during the early last glacial period. (2) A mostly annually laminated late Holocene section (~3700-1700 cal yr BP) was analysed in unprecedented detail through a multi-proxy, inter-site correlation approach of a shallow-water core (DSEn) and its deep-basin counterpart (5017-1). Within this study, a ca 1500 years comprising time series of erosion and dust deposition events was established and anchored to the absolute time-scale through 14C dating and age modelling. A particular focus of this study was the characterisation of two dry periods, from ~3500 to 3300 and from ~3000 to 2400 cal yr BP, respectively. Thereby, a major outcome was the coincidence of the latter dry period with a period of moist and cold climate in Europe related to a Grand Solar Minimum around 2800 cal yr BP and an increase in flood events despite overall dry conditions in the Dead Sea region during that time. These contrasting climate signatures in Europe and at the Dead Sea were likely linked through complex teleconnections of atmospheric circulation, causing a change in synoptic weather patterns in the eastern Mediterranean. In summary, within this doctorate the lithostratigraphic framework of a unique long sediment core from the deep Dead Sea basin is established, which serves as a base for any further high-resolution investigations on this core. It is demonstrated in two case studies that micro-facies analyses are an invaluable tool to understand the depositional processes in the Dead Sea and to decipher past climate variability in the Levant on millennial to seasonal time-scales. Hence, this work adds important knowledge helping to establish the deep Dead Sea record as a key climate archive of supra-regional significance.}, language = {en} } @phdthesis{Nimz2015, author = {Nimz, Katharina}, title = {Sound perception and production in a foreign language}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-361-9}, issn = {2190-4545}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88794}, school = {Universit{\"a}t Potsdam}, pages = {xix, 236}, year = {2015}, abstract = {The present study addresses the question of how German vowels are perceived and produced by Polish learners of German as a Foreign Language. It comprises three main experiments: a discrimination experiment, a production experiment, and an identification experiment. With the exception of the discrimination task, the experiments further investigated the influence of orthographic marking on the perception and production of German vowel length. It was assumed that explicit markings such as the Dehnungs-h ("lengthening h") could help Polish GFL learners in perceiving and producing German words more correctly. The discrimination experiment with manipulated nonce words showed that Polish GFL learners detect pure length differences in German vowels less accurately than German native speakers, while this was not the case for pure quality differences. The results of the identification experiment contrast with the results of the discrimination task in that Polish GFL learners were better at judging incorrect vowel length than incorrect vowel quality in manipulated real words. However, orthographic marking did not turn out to be the driving factor and it is suggested that metalinguistic awareness can explain the asymmetry between the two perception experiments. The production experiment supported the results of the identification task in that lengthening h did not help Polish learners in producing German vowel length more correctly. Yet, as far as vowel quality productions are concerned, it is argued that orthography does influence L2 sound productions because Polish learners seem to be negatively influenced by their native grapheme-to-phoneme correspondences. It is concluded that it is important to differentiate between the influence of the L1 and L2 orthographic system. On the one hand, the investigation of the influence of orthographic vowel length markers in German suggests that Polish GFL learners do not make use of length information provided by the L2 orthographic system. On the other hand, the vowel quality data suggest that the L1 orthographic system plays a crucial role in the acquisition of a foreign language. It is therefore proposed that orthography influences the acquisition of foreign sounds, but not in the way it was originally assumed.}, language = {en} } @phdthesis{Obu2015, author = {Obu, Jaroslav}, title = {Effect of mass wasting on soil organic carbon storage and coastal erosion in permafrost environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90599}, school = {Universit{\"a}t Potsdam}, pages = {iii, 93}, year = {2015}, abstract = {Accelerated permafrost thaw under the warming Arctic climate can have a significant impact on Arctic landscapes. Areas underlain by permafrost store high amounts of soil organic carbon (SOC). Permafrost disturbances may contribute to increased release of carbon dioxide and methane to the atmosphere. Coastal erosion, amplified through a decrease in Arctic sea-ice extent, may also mobilise SOC from permafrost. Large expanses of permafrost affected land are characterised by intense mass-wasting processes such as solifluction, active-layer detachments and retrogressive thaw slumping. Our aim is to assess the influence of mass wasting on SOC storage and coastal erosion. We studied SOC storage on Herschel Island by analysing active-layer and permafrost samples, and compared non-disturbed sites to those characterised by mass wasting. Mass-wasting sites showed decreased SOC storage and material compaction, whereas sites characterised by material accumulation showed increased storage. The SOC storage on Herschel Island is also significantly correlated to catenary position and other slope characteristics. We estimated SOC storage on Herschel Island to be 34.8 kg C m-2. This is comparable to similar environments in northwest Canada and Alaska. Coastal erosion was analysed using high resolution digital elevation models (DEMs). Two LIDAR scanning of the Yukon Coast were done in 2012 and 2013. Two DEMs with 1 m horizontal resolution were generated and used to analyse elevation changes along the coast. The results indicate considerable spatial variability in short-term coastline erosion and progradation. The high variability was related to the presence of mass-wasting processes. Erosion and deposition extremes were recorded where the retrogressive thaw slump (RTS) activity was most pronounced. Released sediment can be transported by longshore drift and affects not only the coastal processes in situ but also along adjacent coasts. We also calculated volumetric coastal erosion for Herschel Island by comparing a stereo-photogrammetrically derived DEM from 2004 with LIDAR DEMs. We compared this volumetric erosion to planimetric erosion, which was based on coastlines digitised from satellite imagery. We found a complex relationship between planimetric and volumetric coastal erosion, which we attribute to frequent occurrence of mass-wasting processes along the coasts. Our results suggest that volumetric erosion corresponds better with environmental forcing and is more suitable for the estimation of organic carbon fluxes than planimetric erosion. Mass wasting can decrease SOC storage by several mechanisms. Increased aeration following disturbance may increase microbial activity, which accelerates organic matter decomposition. New hydrological conditions that follow the mass wasting event can cause leaching of freshly exposed material. Organic rich material can also be directly removed into the sea or into a lake. On the other hand the accumulation of mobilised material can result in increased SOC storage. Mass-wasting related accumulations of mobilised material can significantly impact coastal erosion in situ or along the adjacent coast by longshore drift. Therefore, the coastline movement observations cannot completely resolve the actual sediment loss due to these temporary accumulations. The predicted increase of mass-wasting activity in the course of Arctic warming may increase SOC mobilisation and coastal erosion induced carbon fluxes.}, language = {en} } @phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} } @phdthesis{Otto2015, author = {Otto, Katharina Alexandra}, title = {Mass wasting and the Coriolis effect on asteroid Vesta}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87390}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 251}, year = {2015}, abstract = {This work investigates the influence of the Coriolis force on mass motion related to the Rheasilvia impact basin on asteroid (4) Vesta's southern hemisphere. The giant basin is 500km in diameter, with a centre which nearly coincides with the rotation axis of Vesta. The Rheasilvia basin partially overlaps an earlier, similarly large impact basin, Veneneia. Mass motion within and in the vicinity of the Rheasilvia basin includes slumping and landslides, which, primarily due to their small linear extents, have not been noticeably affected by the Coriolis force. However, a series of ridges related to the basin exhibit significant curvature, which may record the effect of the Coriolis force on the mass motion which generated them. In this thesis 32 of these curved ridges, in three geologically distinct regions, were examined. The mass motion velocities from which the ridge curvatures may have resulted during the crater modification stage were investigated. Velocity profiles were derived by fitting inertial circles along the curved ridges and considering both the current and past rotation states of Vesta. An iterative, statistical approach was used, whereby the radii of inertial circles were obtained through repeated fitting to triplets of points across the ridges. The most frequently found radius for each central point was then used for velocity derivation at that point. The results of the velocity analysis are strongly supportive of a Coriolis force origin for the curved ridges. Derived velocities (29.6 ± 24.6 m/s) generally agree well with previously published predictions from numerical simulations of mass motion during the impact process. Topographical features such as local slope gradient and mass deposition regions on the curved ridges also independently agree with regions in which the calculated mass motion accelerates or decelerates. Sections of constant acceleration, deceleration and constant velocity are found, showing that mass motion is being governed by varying conditions of topography, regolith structure and friction. Estimates of material properties such as the effective viscosities (1.9-9.0·10⁶ Pa·s) and coefficients of friction (0.02-0.81) are derived from the velocity profile information in these sections. From measured accelerations of mass motions on the crater wall, it is also shown that the crater walls must have been locally steeper at the time of the mass motion. Together with these novel insights into the state and behaviour of material moving during the modification stage of Rheasilvia's formation, this work represents the first time that the Coriolis Effect on mass motions during crater formation has been shown to result in diagnostic features preserved until today.}, language = {en} } @phdthesis{Papendiek2015, author = {Papendiek, Franka}, title = {Fodder legumes for Green Biorefineries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87198}, school = {Universit{\"a}t Potsdam}, pages = {XI, 111}, year = {2015}, abstract = {Peak oil is forcing our society to shift from fossil to renewable resources. However, such renewable resources are also scarce, and they too must be used in the most efficient and sustainable way possible. Biorefining is a concept that represents both resource efficiency and sustainability. This approach initiates a cascade use, which means food and feed production before material use, and an energy-related use at the end of the value-added chain. However, sustainability should already start in the fields, on the agricultural side, where the industrially-used biomass is produced. Therefore, the aim of my doctoral thesis is to analyse the sustainable feedstock supply for biorefineries. In contrast to most studies on biorefineries, I focus on the sustainable provision of feedstock and not on the bioengineering processing of whatever feedstock is available. Grasslands provide a high biomass potential. They are often inefficiently used, so a new utilisation concept based on the biorefining approach can increase the added value from grasslands. Fodder legumes from temporary and permanent grasslands were chosen for this study. Previous research shows that they are a promising feedstock for industrial uses, and their positive environmental impact is an important byproduct to promote sustainable agricultural production systems. Green Biorefineries are a class of biorefineries that use fresh green biomass, such as grasses or fodder legumes, as feedstock. After fractionation, an organic solution (press juice) forms; this is used for the production of organic acids, chemicals and extracts, as well as fertilisers. A fibre component (press cake) is also created to produce feed, biomaterials and biogas. This thesis examines a specific value chain, using alfalfa and clover/grass as feedstock and generating lactic acid and one type of cattle feed from it. The research question is if biomass production needs to be adapted for the utilisation of fodder legumes in the Green Biorefinery approach. I have attempted to give a holistic analysis of cultivation, processing and utilisation of two specific grassland crops. Field trials with alfalfa and clover/grass at different study sites were carried out to obtain information on biomass quality and quantity depending on the crop, study site and harvest time. The fresh biomass was fractionated with a screw press and the composition of press juices and cakes was analysed. Fermentation experiments took place to determine the usability of press juices for lactic acid production. The harvest time is not of high importance for the quality of press juices as a fermentation medium. For permanent grasslands, late cuts, often needed for reasons of nature conservation, are possible without a major influence on feedstock quality. The press cakes were silaged for feed-value determination. Following evidence that both intermediate products are suitable feedstocks in the Green Biorefinery approach, I developed a cost-benefit analysis, comparing different production scenarios on a farm. Two standard crop rotations for Brandenburg, producing either only market crops or market crops and fodder legumes for ruminant feed production, were compared to a system that uses the cultivated fodder legumes for the Green Biorefinery value chain instead of only feed production. Timely processing of the raw material is important to maintain quality for industrial uses, so on-site processing at the farm is assumed in Green Biorefinery scenario. As a result, more added value stays in the rural area. Two farm sizes, common for many European regions, were chosen to examine the influence of scale. The cost site of farmers has also been analysed in detail to assess which farm characteristics make production of press juices for biochemical industries viable. Results show that for large farm sizes in particular, the potential profits are high. Additionally, the wider spectrum of marketable products generates new sources of income for farmers. The holistic analysis of the supply chain provides evidence that the cultivation processes for fodder legumes do not need to be adapted for use in Green Biorefineries. In fact, the new utilisation approach even widens the cultivation and processing spectrum and can increase economic viability of fodder legume production in conventional farming.}, language = {en} } @phdthesis{Pingel2015, author = {Pingel, Heiko}, title = {Mountain-range uplift \& climate-system interactions in the Southern Central Andes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82301}, school = {Universit{\"a}t Potsdam}, pages = {xii, 178}, year = {2015}, abstract = {Zwei h{\"a}ufig diskutierte Aspekte der sp{\"a}tk{\"a}nozoischen Gebirgsbildung der Anden sind der Zeitpunkt sowie die Art und Weise der Heraushebung des Puna-Plateaus und seiner Randgebiete innerhalb der Ostkordillere und die damit verbundenen klimatischen {\"A}nderungen in NW Argentinien. Die Ostkordillere trennt die Bereiche des endorheischen, ariden Plateaus von semiariden und extern entw{\"a}sserten intermontanen Becken sowie dem humiden Andenvorland im Osten. Diese Unterschiede verdeutlichen die Bedeutung der {\"o}stlichen Flanken der Anden als orografische Barrieren gegen{\"u}ber feuchten Luftmassen aus dem Osten und spiegelt sich auch in ausgepr{\"a}gten Relief- und Topografiegradienten, der Niederschlagsverteilung, und der Effizienz von Oberfl{\"a}chenprozessen wider. Obwohl das {\"u}bergeordnete Deformationsmuster in diesem Teil der Anden eine ostw{\"a}rts gerichtete Wanderung der Deformationsprozesse im Gebirge indiziert, gibt es hier keine klar definierte Deformationsfront. Hebungsvorg{\"a}nge und die damit im Zusammenhang stehenden Sedimentprozesse setzen r{\"a}umlich und zeitlich sehr unterschiedlich ein. Zudem gestalten periodisch wiederkehrende Deformationsereignisse innerhalb intermontaner Becken und diachrone Hebungsvorg{\"a}nge, durch Reaktivierung {\"a}lterer Sockelstrukturen im Vorland, eine detaillierte Auswertung der r{\"a}umlich-zeitlichen Hebungsmuster zus{\"a}tzlich schwierig. Die vorliegende Arbeit konzentriert sich haupts{\"a}chlich auf die tektonische Entwicklung der Ostkordillere im Nordwesten Argentiniens, die Ablagerungsgeschichte ihrer intermontanen Sedimentbecken und die topografische Entwicklung der Ostflanke des andinen Puna-Plateaus. Im Allgemeinen sind sich die Sedimentbecken der Ostkordillere und der angrenzenden Provinzen, den Sierras Pampeanas und der Santa B{\´a}rbara Region, den durch St{\"o}rungen begrenzten und mit Sedimenten verf{\"u}llten Becken der hochandinen Plateauregion sehr {\"a}hnlich. Deutliche Unterschiede zur Puna bestehen aber dennoch, denn wiederholte Deformations-, Erosions- und Sedimentationsprozesse haben in den intermontanen Becken zu einer vielf{\"a}ltigen Stratigrafie, {\"U}berlagerungsprozessen und einer durch tektonische Prozesse und klimatischen Wandel charakterisierten Landschaft beigetragen. Je nach Erhaltungsgrad k{\"o}nnen in einigen F{\"a}llen Spuren dieser sediment{\"a}ren und tektonischen Entwicklung bis in die Zeit zur{\"u}ckreichen, als diese Bereiche des Gebirges noch Teil eines zusammenh{\"a}ngenden und unverformten Vorlandbeckens waren. Im Nordwesten Argentiniens enthalten k{\"a}nozoische Sedimente zahlreiche datierbare und geochemisch korrelierbare Vulkanaschen, die nicht nur als wichtige Leithorizonte zur Entschl{\"u}sselung tektonischer und sediment{\"a}rer Ereignisse dienen. Die vulkanischen Gl{\"a}ser dieser Aschen archivieren außerdem Wasserstoff-Isotopenverh{\"a}ltnisse fr{\"u}herer Oberfl{\"a}chenwasser, mit deren Hilfe - im Vergleich mit den Isotopenverh{\"a}ltnissen rezenter meteorischer W{\"a}sser - die r{\"a}umliche und zeitliche Entstehung orografischer Barrieren und tektonisch erzwungene Klima- und Umweltver{\"a}nderungen verfolgt werden k{\"o}nnen. Uran-Blei-Datierungen an Zirkonen aus den vulkanischen Aschelagen und die Rekonstruktion sediment{\"a}rer Pal{\"a}otransportrichtungen im intermontanen Humahuaca-Becken in der Ostkordillere (23.5° S) deuten an, dass das heutige Becken bis vor etwa 4.2 Ma Bestandteil eines gr{\"o}ßtenteils uneingeschr{\"a}nkten Ablagerungsbereichs war, der sich bis ins Vorland erstreckt haben muss. Deformation und Hebung {\"o}stlich des heutigen Beckens sorgten dabei f{\"u}r eine fortschreitende Entkopplung des Entw{\"a}sserungsnetzes vom Vorland und eine Umlenkung der Flussl{\"a}ufe nach S{\"u}den. In der Folge erzwang die weitere Hebung der Gebirgsbl{\"o}cke das Abregnen {\"o}stlicher Luftmassen in immer {\"o}stlicher gelegene Bereiche. Zudem k{\"o}nnen periodische Schwankungen der hydrologischen Verbindung des Beckens mit dem Vorland im Zusammenhang mit der Ablagerung und Erosion m{\"a}chtiger Beckenf{\"u}llungen identifiziert werden. Systematische Beziehungen zwischen Verwerfungen, regionalen Diskontinuit{\"a}ten und verstellten Terrassenfl{\"a}chen verweisen außerdem auf ein generelles Muster beckeninterner Deformation, vermutlich als Folge umfangreicher Beckenerosion und damit verbundenen {\"A}nderungen im tektonischen Spannungsfeld der Region. Einige dieser Beobachtungen k{\"o}nnen anhand ver{\"a}nderter Wasserstoff-Isotopenkonzentrationen vulkanischer Gl{\"a}ser aus der k{\"a}nozoischen Stratigrafie untermauert werden. Die δDg-Werte zeigen zwei wesentliche Trends, die einerseits in Verbindung mit Oberfl{\"a}chenhebung innerhalb des Einzugsgebiets zwischen 6.0 und 3.5 Ma stehen und andererseits mit dem Einsetzen semiarider Bedingungen durch Erreichen eines Schwellenwertes der Topografie der {\"o}stlich gelegenen Gebirgsz{\"u}ge nach 3.5 Ma erkl{\"a}rt werden k{\"o}nnen. Tektonisch bedingte Unterbrechung der Sedimentzufuhr aus westlich gelegenen Liefergebieten um 4.2 Ma und die folgende Hinterland-Aridifizierung deuten weiterhin auf die M{\"o}glichkeit hin, dass diese Prozesse die Folge eines lateralen Wachstums des Puna-Plateaus sind. Diese Aridifizierung im Bereich der Puna resultierte in einem ineffizienten, endorheischen Entw{\"a}sserungssystem, das dazu beigetragen hat, das Plateau vor Einschneidung und externer Entw{\"a}sserung zu bewahren und Reliefgegens{\"a}tze aufgrund fortgesetzter Beckensedimentation reduzierte. Die diachrone Natur der Hebungen und Beckenbildungen sowie deren Auswirkungen auf das Flusssystem im angrenzenden Vorland wird sowohl durch detaillierte Analysen der Sedimentherkunft und Transportrichtungen als auch Uran-Blei-Datierungen im Lerma- und Met{\´a}n-Becken (25° S) weiterhin unterstrichen. Das wird besonders deutlich am Beispiel der isolierten Hebung der Sierra de Met{\´a}n vor etwa 10 Ma, die mehr als 50 km von der aktiven orogenen Front im Westen entfernt liegt. Ab 5 Ma sind typische Lithologien der Puna nicht mehr in den Vorlandsedimenten nachweisbar, welches die weitere Hebung innerhalb der Ostkordillere und die hydrologische Isolation des Angastaco-Beckens in dieser Region dokumentiert. Im Sp{\"a}tplioz{\"a}n und Quart{\"a}r ist die Deformation letztlich {\"u}ber das gesamte Vorland verteilt und bis heute aktiv. Um die Beziehungen zwischen tektonisch kontrollierten Ver{\"a}nderungen der Topografie und deren Einfluss auf atmosph{\"a}rische Prozesse besser zu verstehen, werden in dieser Arbeit weitere altersspezifische Wasserstoff-Isotopendaten vulkanischer Gl{\"a}ser aus dem zerbrochenen Vorland, dem Angastaco-Becken in der {\"U}bergangsregion zwischen Ostkordillere und Punarand und anderer intermontaner Becken weiter s{\"u}dlich vorgestellt. Die Resultate dokumentieren {\"a}hnliche H{\"o}henlagen der untersuchten Regionen bis ca. 7 Ma, gefolgt von Hebungsprozessen im Bereich des Angastaco-Beckens. Ein Vergleich mit Isotopendaten vom benachbarten Puna-Plateau hilft abrupte δDg-Schwankungen in den intermontanen Daten zu erkl{\"a}ren und untermauert die Existenz wiederkehrender Phasen verst{\"a}rkt konvektiver Wetterlagen im Plioz{\"a}n, {\"a}hnlich heutigen Bedingungen. In dieser Arbeit werden gel{\"a}ndeorientierte und geochemische Methoden kombiniert, um Erkenntnisse {\"u}ber die Abl{\"a}ufe von topografiebildenden Deformations- und Hebungsprozessen zu gewinnen und Wechselwirkungen mit der daraus resultierenden Niederschlagsverteilung, Erosion und Sedimentation innerhalb tektonisch aktiver Gebirge zu erforschen. Diese Erkenntnisse sind f{\"u}r ein besseres Verst{\"a}ndnis von Subduktionsgebirgen essentiell, besonders hinsichtlich des Deformationsstils und der zeitlich-r{\"a}umlichen Beziehungen bei der Hebung und Sedimentbeckenbildung. Diese Arbeit weist dar{\"u}berhinaus auf die Bedeutung stabiler Isotopensysteme zur Beantwortung pal{\"a}oaltimetrischer Fragestellungen und zur Erforschung von Pal{\"a}oumweltbedingungen hin und liefert wichtige Erkenntnisse f{\"u}r einen kritischen Umgang mit solchen Daten in anderen Regionen.}, language = {en} } @phdthesis{Pradhan2015, author = {Pradhan, Prajal}, title = {Food demand and supply under global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77849}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 141}, year = {2015}, abstract = {Anthropogenic activities have transformed the Earth's environment, not only on local level, but on the planetary-scale causing global change. Besides industrialization, agriculture is a major driver of global change. This change in turn impairs the agriculture sector, reducing crop yields namely due to soil degradation, water scarcity, and climate change. However, this is a more complex issue than it appears. Crop yields can be increased by use of agrochemicals and fertilizers which are mainly produced by fossil energy. This is important to meet the increasing food demand driven by global demographic change, which is further accelerated by changes in regional lifestyles. In this dissertation, we attempt to address this complex problem exploring agricultural potential globally but on a local scale. For this, we considered the influence of lifestyle changes (dietary patterns) as well as technological progress and their effects on climate change, mainly greenhouse gas (GHG) emissions. Furthermore, we examined options for optimizing crop yields in the current cultivated land with the current cropping patterns by closing yield gaps. Using this, we investigated in a five-minute resolution the extent to which food demand can be met locally, and/or by regional and/or global trade. Globally, food consumption habits are shifting towards calorie rich diets. Due to dietary shifts combined with population growth, the global food demand is expected to increase by 60-110\% between 2005 and 2050. Hence, one of the challenges to global sustainability is to meet the growing food demand, while at the same time, reducing agricultural inputs and environmental consequences. In order to address the above problem, we used several freely available datasets and applied multiple interconnected analytical approaches that include artificial neural network, scenario analysis, data aggregation and harmonization, downscaling algorithm, and cross-scale analysis. Globally, we identified sixteen dietary patterns between 1961 and 2007 with food intakes ranging from 1,870 to 3,400 kcal/cap/day. These dietary patterns also reflected changing dietary habits to meat rich diets worldwide. Due to the large share of animal products, very high calorie diets that are common in the developed world, exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day. This is higher than total per capita emissions of 1.4-4.5 kg CO2eq./day associated with low and moderate calorie diets that are common in developing countries. Currently, 40\% of the global crop calories are fed to livestock and the feed calorie use is four times the produced animal calories. However, these values vary from less than 1 kcal to greater 10 kcal around the world. On the local and national scale, we found that the local and national food production could meet demand of 1.9 and 4.4 billion people in 2000, respectively. However, 1 billion people from Asia and Africa require intercontinental agricultural trade to meet their food demand. Nevertheless, these regions can become food self-sufficient by closing yield gaps that require location specific inputs and agricultural management strategies. Such strategies include: fertilizers, pesticides, soil and land improvement, management targeted on mitigating climate induced yield variability, and improving market accessibility. However, closing yield gaps in particular requires global N-fertilizer application to increase by 45-73\%, P2O5 by 22-46\%, and K2O by 2-3 times compare to 2010. Considering population growth, we found that the global agricultural GHG emissions will approach 7 Gt CO2eq./yr by 2050, while the global livestock feed demand will remain similar to 2000. This changes tremendously when diet shifts are also taken into account, resulting in GHG emissions of 20 Gt CO2eq./yr and an increase of 1.3 times in the crop-based feed demand between 2000 and 2050. However, when population growth, diet shifts, and technological progress by 2050 were considered, GHG emissions can be reduced to 14 Gt CO2eq./yr and the feed demand to nearly 1.8 times compare to that in 2000. Additionally, our findings shows that based on the progress made in closing yield gaps, the number of people depending on international trade can vary between 1.5 and 6 billion by 2050. In medium term, this requires additional fossil energy. Furthermore, climate change, affecting crop yields, will increase the need for international agricultural trade by 4\% to 16\%. In summary, three general conclusions are drawn from this dissertation. First, changing dietary patterns will significantly increase crop demand, agricultural GHG emissions, and international food trade in the future when compared to population growth only. Second, such increments can be reduced by technology transfer and technological progress that will enhance crop yields, decrease agricultural emission intensities, and increase livestock feed conversion efficiencies. Moreover, international trade dependency can be lowered by consuming local and regional food products, by producing diverse types of food, and by closing yield gaps. Third, location specific inputs and management options are required to close yield gaps. Sustainability of such inputs and management largely depends on which options are chosen and how they are implemented. However, while every cultivated land may not need to attain its potential yields to enable food security, closing yield gaps only may not be enough to achieve food self-sufficiency in some regions. Hence, a combination of sustainable implementations of agricultural intensification, expansion, and trade as well as shifting dietary habits towards a lower share of animal products is required to feed the growing population.}, language = {en} } @phdthesis{Priegnitz2015, author = {Priegnitz, Mike}, title = {Development of geophysical methods to characterize methane hydrate reservoirs on a laboratory scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89321}, school = {Universit{\"a}t Potsdam}, pages = {X, 99}, year = {2015}, abstract = {Gashydrate sind kristalline Feststoffe bestehend aus Wasser und Gasmolek{\"u}len. Sie sind stabil bei erh{\"o}hten Dr{\"u}cken und niedrigen Temperaturen. Nat{\"u}rliche Hydratvorkommen treten daher an Kontinentalh{\"a}ngen, in Permafrostb{\"o}den und in tiefen Seen sowie Binnenmeeren auf. Bei der Hydratbildung orientieren sich die Wassermolek{\"u}le neu und bilden sogenannte K{\"a}figstrukturen, in die Gas eingelagert werden kann. Aufgrund des hohen Drucks bei der Hydratbildung k{\"o}nnen große Mengen an Gas in die Hydratstruktur eingebaut werden. Das Volumenverh{\"a}ltnis von Wasser zu Gas kann dabei bis zu 1:172 bei 0°C und Atmosph{\"a}rendruck betragen. Nat{\"u}rliche Gashydrate enthalten haupts{\"a}chlich Methan. Da Methan sowohl ein Treibhausgas als auch ein Brenngas ist, stellen Gashydrate gleichermaßen eine potentielle Energieressource sowie eine m{\"o}gliche Quelle f{\"u}r Treibhausgase dar. Diese Arbeit untersucht die physikalischen Eigenschaften von Methanhydrat ges{\"a}ttigten Sedimentproben im Labormaßstab. Dazu wurde ein großer Reservoirsimulator (LARS) mit einer eigens entwickelten elektrischen Widerstandstomographie ausger{\"u}stet, die das erste Mal an hydratges{\"a}ttigten Sedimentproben unter kontrollierten Temperatur-, Druck-, und Hydrats{\"a}ttigungsbedingungen im Labormaßstab angewendet wurde. {\"U}blicherweise ist der Porenraum von (marinen) Sedimenten mit elektrisch gut leitendem Salzwasser gef{\"u}llt. Da Hydrate einen elektrischen Isolator darstellen, ergeben sich große Kontraste hinsichtlich der elektrischen Eigenschaften im Porenraum w{\"a}hrend der Hydratbildung und -zersetzung. Durch wiederholte Messungen w{\"a}hrend der Hydraterzeugung ist es m{\"o}glich die r{\"a}umliche Widerstandsverteilung in LARS aufzuzeichnen. Diese Daten bilden in der Folge die Grundlage f{\"u}r eine neue Auswerteroutine, welche die r{\"a}umliche Widerstandsverteilung in die r{\"a}umliche Verteilung der Hydrats{\"a}ttigung {\"u}berf{\"u}hrt. Dadurch ist es m{\"o}glich, die sich {\"a}ndernde Hydrats{\"a}ttigung sowohl r{\"a}umlich als auch zeitlich hoch aufgel{\"o}st w{\"a}hrend der gesamten Hydraterzeugungsphase zu verfolgen. Diese Arbeit zeigt, dass die entwickelte Widerstandstomographie eine gute Datenqualit{\"a}t aufwies und selbst geringe Hydrats{\"a}ttigungen innerhalb der Sedimentprobe detektiert werden konnten. Bei der Umrechnung der Widerstandsverteilung in lokale Hydrat-S{\"a}ttigungswerte wurden die besten Ergebnisse mit dem Archie-var-phi Ansatz erzielt, der die zunehmende Hydratphase dem Sedimentger{\"u}st zuschreibt, was einer Abnahme der Porosit{\"a}t gleichkommt. Die Widerstandsmessungen zeigten weiterhin, dass die schnelle Hydraterzeugung im Labor zur Ausbildung von kleinen Hydratkristallen f{\"u}hrte, die dazu neigten, zu rekristalliesieren. Es wurden weiterhin Hydrat-Abbauversuche durchgef{\"u}hrt, bei denen die Hydratphase {\"u}ber Druckerniedrigung in Anlehnung an den 2007/2008 Mallik Feldtest zersetzt wurde. Dabei konnte beobachtet werden, dass die Muster der Gas- undWasserflussraten im Labor zum Teil gut nachgebildet werden konnten, jedoch auch aufbaubedingte Abweichungen auftraten. In zwei weiteren Langzeitversuchen wurde die Realisierbarkeit und das Verhalten bei CO2-CH4-Hydrat Austauschversuchen in LARS untersucht. Das tomographische Messsystem wurde dabei genutzt um w{\"a}hrend der CH4 Hydrat Aufbauphase die Hydratverteilung innerhalb der Sedimentprobe zu {\"u}berwachen. Im Zuge der anschließenden CO2-Injektion konnte mithilfe der Widerstandstomographie die sich ausbreitende CO2-Front {\"u}berwacht und der Zeitpunkt des CO2 Durchbruchs identifiziert werden.}, language = {en} } @phdthesis{Prieske2015, author = {Prieske, Olaf}, title = {The role of surface condition in athletic performance}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80503}, school = {Universit{\"a}t Potsdam}, pages = {viii, 118, ix}, year = {2015}, abstract = {During the last two decades, instability training devices have become a popular means in athletic training and rehabilitation of mimicking unstable surfaces during movements like vertical jumps. Of note, under unstable conditions, trunk muscles seem to have a stabilizing function during exercise to facilitate the transfer of torques and angular momentum between the lower and upper extremities. The present thesis addresses the acute effects of surface instability on performance during jump-landing tasks. Additionally, the long-term effects (i.e., training) of surface instability were examined with a focus on the role of the trunk in athletic performance/physical fitness. Healthy adolescent, and young adult subjects participated in three cross-sectional and one longitudinal study, respectively. Performance in jump-landing tasks on stable and unstable surfaces was assessed by means of a ground reaction force plate. Trunk muscle strength (TMS) was determined using an isokinetic device or the Bourban TMS test. Physical fitness was quantified by standing long jump, sprint, stand-and-reach, jumping sideways, Emery balance, and Y balance test on stable surfaces. In addition, activity of selected trunk and leg muscles and lower limb kinematics were recorded during jump-landing tasks. When performing jump-landing tasks on unstable compared to stable surfaces, jump performance and leg muscle activity were significantly lower. Moreover, significantly smaller knee flexion angles and higher knee valgus angles were observed when jumping and landing on unstable compared to stable conditions and in women compared to men. Significant but small associations were found between behavioral and neuromuscular data, irrespective of surface condition. Core strength training on stable as well as on unstable surfaces significantly improved TMS, balance and coordination. The findings of the present thesis imply that stable rather than unstable surfaces provide sufficient training stimuli during jump exercises (i.e., plyometrics). Additionally, knee motion strategy during plyometrics appears to be modified by surface instability and sex. Of note, irrespective of surface condition, trunk muscles only play a minor role for leg muscle performance/activity during jump exercises. Moreover, when implemented in strength training programs (i.e., core strength training), there is no advantage in using instability training devices compared to stable surfaces in terms of enhancement of athletic performance.}, language = {en} } @phdthesis{Prokhorov2015, author = {Prokhorov, Boris E.}, title = {High-latitude coupling processes between thermospheric circulation and solar wind driven magnetospheric currents and plasma convection}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92353}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2015}, abstract = {The high-latitudinal thermospheric processes driven by the solar wind and Interplanetary Magnetic Field (IMF) interaction with the Earth magnetosphere are highly variable parts of the complex dynamic plasma environment, which represent the coupled Magnetosphere - Ionosphere - Thermosphere (MIT) system. The solar wind and IMF interactions transfer energy to the MIT system via reconnection processes at the magnetopause. The Field Aligned Currents (FACs) constitute the energetic links between the magnetosphere and the Earth ionosphere. The MIT system depends on the highly variable solar wind conditions, in particular on changes of the strength and orientation of the IMF. In my thesis, I perform an investigation on the physical background of the complex MIT system using the global physical - numerical, three-dimensional, time-dependent and self-consistent Upper Atmosphere Model (UAM). This model describes the thermosphere, ionosphere, plasmasphere and inner magnetosphere as well as the electrodynamics of the coupled MIT system for the altitudinal range from 80 (60) km up to the 15 Earth radii. In the present study, I developed and investigated several variants of the high-latitudinal electrodynamic coupling by including the IMF dependence of FACs into the UAM model. For testing, the various variants were applied to simulations of the coupled MIT system for different seasons, geomagnetic activities, various solar wind and IMF conditions. Additionally, these variants of the theoretical model with the IMF dependence were compared with global empirical models. The modelling results for the most important thermospheric parameters like neutral wind and mass density were compared with satellite measurements. The variants of the UAM model with IMF dependence show a good agreement with the satellite observations. In comparison with the empirical models, the improved variants of the UAM model reproduce a more realistic meso-scale structures and dynamics of the coupled MIT system than the empirical models, in particular at high latitudes. The new configurations of the UAM model with IMF dependence contribute to the improvement of space weather prediction.}, language = {en} } @phdthesis{Radenacker2015, author = {Radenacker, Anke}, title = {Economic consequences of family dissolution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100217}, school = {Universit{\"a}t Potsdam}, pages = {v, 134}, year = {2015}, abstract = {Welfare states and policies have changed greatly over the past decades, mostly characterized by retrenchments in terms of government spending or in terms of restricted access to certain benefits. In the area of family policies, however, a lot of countries have simultaneously expanded provisions and transfers for families. Bringing together the macro analysis of policy variation and household income changes on the micro-level, the main research question of the dissertation is to what extent economic consequences following separation and divorce in families with children have changed between the 1980s and the 2000s in Germany and the United States. The second research question of the dissertation regards the differences in dissolution outcomes between married and cohabiting parents in Germany. The dissertation thus aims to link institutional regulations of welfare states with the actual income situation of families. To achieve this, a research design was developed that has never been used for the analysis of the economic consequences of family dissolution. For this, the two longest running panel datasets, German Socio-economic Panel (GSOEP) and the US American Panel Study of Income Dynamics (PSID), have been used. The analytic strategy applied to estimate the effects of family dissolution on household income is a difference-in-difference design combined with coarsened exact matching (CEM). To begin with, the dissertation confirmed many findings of previous research, for example regarding the gender differences in family dissolution outcomes. Mothers experience clearly higher relative income losses and consequently higher risks of poverty than fathers. This finding is universal, that is it holds for both countries, for all time periods observed, and for all measures of economic outcome that were employed. Another confirmed finding is the higher level of welfare state intervention in Germany compared to the United States. The dissertation also revealed a number of novel findings. The results show that the expansion of family policies in Germany over time has not been accompanied by substantially decreasing income losses for mothers. Though income losses have slightly decreased over time, they have become more persistent during the years following family dissolution. The impact of the German welfare state has meanwhile been quite stable. American mothers' income losses took place on a slightly lower level than those of German mothers. Only during the 1980s their relative losses were clearly lower than those of German mothers. And also American mothers did not recover as much from their income losses during the 2000s than they used to during the 1980s. For them, the 1996 welfare reform brought a considerable decrease in welfare state support. Accordingly, the results for American mothers can certainly be described as a shift from public to private provision. The general finding of previous studies that fathers do not have to suffer income losses, or if at all rather moderate ones compared to mothers, can be confirmed. Nevertheless, both German and US American fathers face a deterioration of the economic consequences of family dissolution over time. German fathers' relative income changes are still positive though they have decreased over time. One reason for this decrease is the increasing loss of partner earnings following union dissolution. Also among American fathers, income gains still prevail in the year of family dissolution. Two years later, however, they have been facing income losses already since the 1980s which have furthermore increased considerably over time. Zooming in on Germany, family dissolution outcomes by marital status show negligible differences between cohabiting and married mothers in disposable income, but considerable differences in losses of income before taxes and transfers. It is the impact of the welfare state that equalizes the differences in income losses between these two groups of mothers. For married mothers, losses are not as high in the year of event but they have difficulties to recover from these losses. Without the income buffering of the welfare state, married mothers would, three years after family dissolution, remain with relative income losses double as high as for cohabiting mothers. Compared to mothers, differences between married and cohabiting fathers are visible in changes of income before as well as after taxes and transfers. The welfare state does not alter the difference between the two groups of fathers. With regard to both income concepts, cohabiting fathers fare worse than married fathers. Cohabiting fathers suffer moderate income losses of disposable income while married fathers experience moderate income gains. Accounting for support payments is decisive for fathers' income changes. If these payments are not deducted from disposable income, both married and cohabiting fathers experience gains in disposable income following family dissolution.}, language = {en} } @phdthesis{Rajasundaram2015, author = {Rajasundaram, Dhivyaa}, title = {Integrative analysis of heterogeneous plant cell wall related data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77652}, school = {Universit{\"a}t Potsdam}, pages = {xii, 205}, year = {2015}, abstract = {Plant cell walls are complex structures that underpin plant growth and are widely exploited in diverse human activities thus placing them with a central importance in biology. Cell walls have been a prominent area of research for a long time, but the chemical complexity and diversity of cell walls not just between species, but also within plants, between cell-types, and between cell wall micro-domains pose several challenges. Progress accelerated several-fold in cell wall biology owing to advances in sequencing technology, aided soon thereafter by advances in omics and imaging technologies. This development provides additional perspectives of cell walls across a rapidly growing number of species, highlighting a myriad of architectures, compositions, and functions. Furthermore, rather than the component centric view, integrative analysis of the different cell wall components across system-levels help to gain a more in-depth understanding of the structure and biosynthesis of the cell envelope and its interactions with the environment. To this end, in this work three case studies are detailed, all pertaining to the integrative analysis of heterogeneous cell wall related data arising from different system-levels and analytical techniques. A detailed account of multiblock methods is provided and in particular canonical correlation and regression methods of data integration are discussed. In the first integrative analysis, by employing canonical correlation analysis - a multivariate statistical technique to study the association between two datasets - novel insight to the relationship between glycans and phenotypic traits is gained. In addition, sparse partial least squares regression approach that adapts Lasso penalization and allows for the selection of a subset of variables was employed. The second case study focuses on an integrative analysis of images obtained from different spectroscopic techniques. By employing yet another multiblock approach - multiple co-inertia analysis, insitu biochemical composition of cell walls from different cell-types is studied thereby highlighting the common and complementary parts of the two hyperspectral imaging techniques. Finally, the third integrative analysis facilitates gene expression analysis of the Arabidopsis root transcriptome and translatome for the identification of cell wall related genes and compare expression patterns of cell wall synthesis genes. The computational analysis considered correlation and variation of expression across cell-types at both system-levels, and also provides insight into the degree of co-regulatory relationships that are preserved between the two processes. The integrative analysis of glycan data and phenotypic traits in cotton fibers using canonical methods led to the identification of specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Furthermore, this analysis provides a base for future studies on glycan arrays in case of developing cotton fibers. The integrative analysis of images from infrared and Raman spectroscopic approaches allowed the coupling of different analytical techniques to characterize complex biological material, thereby, representing various facets of their chemical properties. Moreover, the results from the co-inertia analysis demonstrated that the study was well adapted as it is relevant for coupling data tables in a symmetric way. Several indicators are proposed to investigate how the global and block scores are related. In addition, studying the root cells of \textit{Arabidopsis thaliana} allowed positing a novel pipeline to systematically investigate and integrate the different levels of information available at the global and single-cell level. The conducted analysis also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell-types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels are identified.}, language = {en} } @phdthesis{Reimer2015, author = {Reimer, Anna Maria}, title = {The poetics of the real and aesthetics of the reel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95660}, school = {Universit{\"a}t Potsdam}, pages = {298}, year = {2015}, abstract = {The dissertation proposes that the spread of photography and popular cinema in 19th- and 20th-century-India have shaped an aesthetic and affective code integral to the reading and interpretation of Indian English novels, particularly when they address photography and/or cinema film, as in the case of the four corpus texts. In analyzing the nexus between 'real' and 'reel', the dissertation shows how the texts address the reader as media consumer and virtual image projector. Furthermore, the study discusses the Indian English novel against the backdrop of the cultural and medial transformations of the 20th century to elaborate how these influenced the novel's aesthetics. Drawing upon reception aesthetics, the author devises the concept of the 'implied spectator' to analyze the aesthetic impact of the novels' images as visual textures. No God in Sight (2005) by Altaf Tyrewala comprises of a string of 41 interior monologues, loosely connected through their narrators' random encounters in Mumbai in the year 2000. Although marked by continuous perspective shifts, the text creates a sensation of acute immediacy. Here, the reader is addressed as implied spectator and is sutured into the narrated world like a film spectator ― an effect created through the use of continuity editing as a narrative technique. Similarly, Ruchir Joshi's The Last Jet Engine Laugh (2002) coll(oc)ates disparate narrative perspectives and explores photography as an artistic practice, historiographic recorder and epistemological tool. The narrative appears guided by the random viewing of old photographs by the protagonist and primary narrator, the photographer Paresh Bhatt. However, it is the photographic negative and the practice of superimposition that render this string of episodes and different perspectives narratively consequential and cosmologically meaningful. Photography thus marks the perfect symbiosis of autobiography and historiography. Tabish Khair's Filming. A Love Story (2007) immerses readers in the cine-aesthetic of 1930s and 40s Bombay film, the era in which the embedded plot is set. Plotline, central scenes and characters evoke the key films of Indian cinema history such as Satyajit Ray's "Pather Panchali" or Raj Kapoor's "Awara". Ultimately, the text written as film dissolves the boundary between fiction and (narrated) reality, reel and real, thereby showing that the images of individual memory are inextricably intertwined with and shaped by collective memory. Ultimately, the reconstruction of the past as and through film(s) conquers trauma and endows the Partition of India as a historic experience of brutal contingency with meaning. The Bioscope Man (Indrajit Hazra, 2008) is a picaresque narrative set in Calcutta - India's cultural capital and birthplace of Indian cinema at the beginning of the 20th century. The autodiegetic narrator Abani Chatterjee relates his rise and fall as silent film star, alternating between the modes of tell and show. He is both autodiegetic narrator and spectator or perceiving consciousness, seeing himself in his manifold screen roles. Beyond his film roles however, the narrator remains a void. The marked psychoanalytical symbolism of the text is accentuated by repeated invocations of dark caves and the laterna magica. Here too, 'reel life' mirrors and foreshadows real life as Indian and Bengali history again interlace with private history. Abani Chatterjee thus emerges as a quintessentially modern man of no qualities who assumes definitive shape only in the lost reels of the films he starred in. The final chapter argues that the static images and visual frames forwarded in the texts observe an integral psychological function: Premised upon linear perspective they imply a singular, static subjectivity appealing to the postmodern subject. In the corpus texts, the rise of digital technology in the 1990s thus appears not so much to have displaced older image repertories, practices and media techniques, than it has lent them greater visibility and appeal. Moreover, bricolage and pastiche emerge as cultural techniques which marked modernity from its inception. What the novels thus perpetuate is a media archeology not entirely servant to the poetics of the real. The permeable subject and the notion of the gaze as an active exchange as encapsulated in the concept of darshan - ideas informing all four texts - bespeak the resilience of a mythical universe continually re-instantiated in new technologies and uses. Eventually, the novels convey a sense of subalternity to a substantially Hindu nationalist history and historiography, the centrifugal force of which developed in the twentieth century and continues into the present.}, language = {en} } @phdthesis{Rohrmann2015, author = {Rohrmann, Alexander}, title = {The role of wind and water in shaping earth's plateaus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77938}, school = {Universit{\"a}t Potsdam}, pages = {XXV, 157}, year = {2015}, abstract = {The overarching goal of this dissertation is to provide a better understanding of the role of wind and water in shaping Earth's Cenozoic orogenic plateaus - prominent high-elevation, low relief sectors in the interior of Cenozoic mountain belts. In particular, the feedbacks between surface uplift, the build-up of topography and ensuing changes in precipitation, erosion, and vegetation patterns are addressed in light of past and future climate change. Regionally, the study focuses on the two world's largest plateaus, the Altiplano-Puna Plateau of the Andes and Tibetan Plateau, both characterized by average elevations of >4 km. Both plateaus feature high, deeply incised flanks with pronounced gradients in rainfall, vegetation, hydrology, and surface processes. These characteristics are rooted in the role of plateaus to act as efficient orographic barriers to rainfall and to force changes in atmospheric flow. The thesis examines the complex topics of tectonic and climatic forcing of the surface-process regime on three different spatial and temporal scales: (1) bedrock wind-erosion rates are quantified in the arid Qaidam Basin of NW Tibet over millennial timescales using cosmogenic radionuclide dating; (2) present-day stable isotope composition in rainfall is examined across the south-central Andes in three transects between 22° S and 28° S; these data are modeled and assessed with remotely sensed rainfall data of the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectroradiometer; (3) finally, a 2.5-km-long Mio-Pliocene sedimentary record of the intermontane Angastaco Basin (25°45' S, 66°00' W) is presented in the context of hydrogen and carbon compositions of molecular lipid biomarker, and oxygen and carbon isotopes obtained from pedogenic carbonates; these records are compared to other environmental proxies, including hydrated volcanic glass shards from volcanic ashes intercalated in the sedimentary strata. There are few quantitative estimates of eolian bedrock-removal rates from arid, low relief landscapes. Wind-erosion rates from the western Qaidam Basin based on cosmogenic 10Be measurements document erosion rates between 0.05 to 0.4 mm/yr. This finding indicates that in arid environments with strong winds, hyperaridity, exposure of friable strata, and ongoing rock deformation and uplift, wind erosion can outpace fluvial erosion. Large eroded sediment volumes within the Qaidam Basin and coeval dust deposition on the Chinese Loess plateau, exemplify the importance of dust production within arid plateau environments for marine and terrestrial depositional processes, but also health issues and fertilization of soils. In the south-central Andes, the analysis of 234 stream-water samples for oxygen and hydrogen reveals that areas experiencing deep convective storms do not show the commonly observed patterns of isotopic fractionation and the expected co-varying relationships between oxygen and hydrogen with increasing elevation. These convective storms are formed over semi-arid intermontane basins in the transition between the broken foreland of the Sierras Pampeanas, the Eastern Cordillera, and the Puna Plateau in the interior of the orogen. Here, convective rainfall dominates the precipitation budget and no systematic stable isotope-elevation relationship exists. Regions to the north, in the transition between the broken foreland and the Subandean foreland fold-and-thrust belt, the impact of convection is subdued, with lower degrees of storminess and a stronger expected isotope-elevation relationship. This finding of present-day fractionation trends of meteoric water is of great importance for paleoenvironmental studies in attempts to use stable isotope relationships in the reconstruction of paleoelevations. The third part of the thesis focuses on the paleohydrological characteristics of the Mio-Pliocene (10-2 Ma) Angastaco Basin sedimentary record, which reveals far-reaching environmental changes during Andean uplift and orographic barrier formation. A precipitation- evapotranspiration record identifies the onset of a precipitation regime related to the South American Low Level Jet at this latitude after 9 Ma. Humid foreland conditions existed until 7 Ma, followed by orographic barrier uplift to the east of the present-day Angastaco Basin. This was superseded by rapid (~0.5 Myr) aridification in an intermontane basin, highlighting the effects of eastward-directed deformation. A transition in vegetation cover from a humid C3 forest ecosystem to semi-arid C4-dominated vegetation was coeval with continued basin uplift to modern elevations.}, language = {en} } @phdthesis{Sarem2015, author = {Sarem, Zeinab}, title = {Regulation of IGF-1 bioactivity by dietary hormones, impact of glucagon and insulin-induced hypoglycemia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82198}, school = {Universit{\"a}t Potsdam}, pages = {IX, 64, IV, XIII}, year = {2015}, abstract = {Der Zusammenhang zwischen Ern{\"a}hrung und der Entwicklung von chronischen Krankenheiten wie metabolischem Syndrom, Diabetes mellitus, Krebs und kardiovaskul{\"a}ren Erkrankungen wurde untersucht. Ver{\"a}nderungen der GH-IGF-1 Achse in Verbindung mit ern{\"a}hrungsbedingten Erkrankungen wurden fr{\"u}her beschrieben. Das Wechselspiel zwischen GH, gesamt IGF-1 und verschiedenen hemmenden und stimulierenden IGF-1 bindenden Proteinen (IGFBPs) bestimmt die IGF-1 Bioaktivit{\"a}t, die als die F{\"a}higkeit von IGF-1 die Phosphorylierung von seinem Rezeptor und folglich seinem Signalsweg zu induzieren, identifiziert ist. Deshalb reicht die Messung der IGF-1 Bioaktivit{\"a}t aus, um {\"A}nderungen des GH-IGF-1 Systems darzustellen. Studien deuten darauf hin, dass proteinreiche Di{\"a}t, gekennzeichnet durch erh{\"o}hte Glukagonsekretion, und Insulin-induzierte Hypoglyk{\"a}mie die Sterblichkeit erh{\"o}hen, und die Mechanismen sind unklar. Sowohl Glukagon als auch Insulin-induzierte Hypoglyk{\"a}mie stimulieren die GH Sekretion. Das Ziel der vorliegenden Studie war, die Wirkung von Glucagon und Insulin-induzierter Hypoglyk{\"a}mie auf die IGF-1 -Bioaktivit{\"a}t als m{\"o}gliche Mechanismen zu characterizieren. In einer doppelblinden, Placebo-kontrollierten Studie wurde Glukagon intramuskul{\"a}r 13 Patienten mit T1DM (6 M{\"a}nner / 7 Frauen; [ BMI ] : 24,8 ± 0,95 kg / m2) , 11 {\"u}bergewichtigen Teilnehmern (OP ; 5/6 ; 34,4 ± 1,7 kg / m2) und 13 gesunden schlanken Teilnehmern (LP ; 6/7 ; 21,7 ± 0,6 kg / m2) administriert. Zw{\"o}lf {\"u}bergewichtige Teilnehmer (OP ; 6/6 ; 34,4 ± 1,7 kg / m2) und 13 gesunde schlanke Teilnehmer (LP ; 6/7 ; 21,7 ± 0,6 kg / m2) f{\"u}hrten Insulintoleranztests in einer weiteren doppelblinden, Plazebo- kontrollierten Studie durch. {\"A}nderungen des GH, gesamt-IGF-1, der IGF-bindenden Proteinen ( IGFBPs ) und der IGF-1-Bioaktivit{\"a}t wurden durch das zellbasierte KIRA-Verfahren gemessen. Außerdem wurde die Wechselwirkung zwischen den metabolischen Hormonen (Glucagon und Insulin) und GH-IGF-1-System auf der Transkriptionsebene mit prim{\"a}ren Maus-Hepatozyten untersucht. In dieser Arbeit verringerte Glukagon die IGF-1-Bioaktivit{\"a}t bei den Menschen unabh{\"a}ngig von k{\"o}rpereigenen Insulinspiegeln, h{\"o}chstwahrscheinlich durch Modulation des IGFBP-1 und -2. Die Glukagon-induzierte Reduktion der IGF-1-Bioaktivit{\"a}t stellt einen neuen Mechanismus der Wirkung von Glucagon auf die GH-Sekretion dar und kann als m{\"o}gliche Erkl{\"a}rung f{\"u}r die negativen Auswirkungen der proteinreichen Di{\"a}t im Zusammenhang auf das erh{\"o}hte kardiovaskul{\"a}re Risiko und die Mortalit{\"a}t vorgeschlagen werden. Zus{\"a}tzlich wurde die Insulin-induzierten Hypoglyk{\"a}mie eine Abnahme der IGF-1-Bioaktivit{\"a}t durch Hochregulierung von IGFBP-2 zugeordnet. Diese Ergebnisse k{\"o}nnen auf m{\"o}gliche und wenig erforschte Mechanismen zur Erl{\"a}uterung der starken Assoziation zwischen Hypoglyk{\"a}mie und erh{\"o}hter kardiovaskul{\"a}rer Mortalit{\"a}t bei diabetischen Patienten beziehen.}, language = {en} } @phdthesis{Schirmack2015, author = {Schirmack, Janosch}, title = {Activity of methanogenic archaea under simulated Mars analog conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73010}, school = {Universit{\"a}t Potsdam}, pages = {VI, 108}, year = {2015}, abstract = {Assumed comparable environmental conditions of early Mars and early Earth in 3.7 Ga ago - at a time when first fossil records of life on Earth could be found - suggest the possibility of life emerging on both planets in parallel. As conditions changed, the hypothetical life on Mars either became extinct or was able to adapt and might still exist in biological niches. The controversial discussed detection of methane on Mars led to the assumption, that it must have a recent origin - either abiotic through active volcanism or chemical processes, or through biogenic production. Spatial and seasonal variations in the detected methane concentrations and correlations between the presence of water vapor and geological features such as subsurface hydrogen, which are occurring together with locally increased detected concentrations of methane, gave fuel to the hypothesis of a possible biological source of the methane on Mars. Therefore the phylogenetically old methanogenic archaea, which have evolved under early Earth conditions, are often used as model-organisms in astrobiological studies to investigate the potential of life to exist in possible extraterrestrial habitats on our neighboring planet. In this thesis methanogenic archaea originating from two extreme environments on Earth were investigated to test their ability to be active under simulated Mars analog conditions. These extreme environments - the Siberian permafrost-affected soil and the chemoautotrophically based terrestrial ecosystem of Movile cave, Romania - are regarded as analogs for possible Martian (subsurface) habitats. Two novel species of methanogenic archaea isolated from these environments were described within the frame of this thesis. It could be shown that concentrations up to 1 wt\% of Mars regolith analogs added to the growth media had a positive influence on the methane production rates of the tested methanogenic archaea, whereas higher concentrations resulted in decreasing rates. Nevertheless it was possible for the organisms to metabolize when incubated on water-saturated soil matrixes made of Mars regolith analogs without any additional nutrients. Long-term desiccation resistance of more than 400 days was proven with reincubation and indirect counting of viable cells through a combined treatment with propidium monoazide (to inactivate DNA of destroyed cells) and quantitative PCR. Phyllosilicate rich regolith analogs seem to be the best soil mixtures for the tested methanogenic archaea to be active under Mars analog conditions. Furthermore, in a simulation chamber experiment the activity of the permafrost methanogen strain Methanosarcina soligelidi SMA-21 under Mars subsurface analog conditions could be proven. Through real-time wavelength modulation spectroscopy measurements the increase in the methane concentration at temperatures down to -5 °C could be detected. The results presented in this thesis contribute to the understanding of the activity potential of methanogenic archaea under Mars analog conditions and therefore provide insights to the possible habitability of present-day Mars (near) subsurface environments. Thus, it contributes also to the data interpretation of future life detection missions on that planet. For example the ExoMars mission of the European Space Agency (ESA) and Roscosmos which is planned to be launched in 2018 and is aiming to drill in the Martian subsurface.}, language = {en} } @phdthesis{Schroeder2015, author = {Schr{\"o}der, Sarah}, title = {Modelling surface evolution coupled with tectonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90385}, school = {Universit{\"a}t Potsdam}, pages = {viii, 129}, year = {2015}, abstract = {This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west.}, language = {en} } @phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @phdthesis{Soulie2015, author = {Souli{\´e}, Virginie}, title = {Sessile droplets of salt solutions on inert and metallic surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90329}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis we investigate the evaporation behaviour of sessile droplets of aqueous saline solutions on planar inert and metallic surfaces and characterise the corrosion phenomenon for iron surfaces. First we study the evaporation behaviour of sessile salty droplets on inert surfaces for a wide range of salt concentrations, relative humidities, droplet sizes and contact angles. Our study reveals the range of validity of the well-accepted diffusion-controlled evaporation model and highlights the impact of salt concentration (surface tension) gradients driven Marangoni flows on the evaporation behaviour and the subsequent salty deposit patterns. Furthermore we study the spatial-temporal evolution of sessile droplets from saline solutions on metallic surfaces. In contrast to the simple, generally accepted Evans droplet model, we show that the corrosion spreads ahead of the macroscopic contact line with a peripheral film. The three-phase contact line is destabilized by surface tension gradients induced by ionic composition changes during the course of the corrosion process and migration of cations towards the droplet perimeter. Finally we investigate the corrosion behaviour under drying salty sessile droplets on metallic surfaces. The corrosion process, in particular the location of anodic and cathodic activities over the footprint droplet area is correlated to the spatial distribution of the salt inside the drying droplet.}, language = {en} } @phdthesis{Streich2015, author = {Streich, David}, title = {Understanding massive disk galaxy formation through resolved stellar populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81027}, school = {Universit{\"a}t Potsdam}, pages = {ix, 140}, year = {2015}, abstract = {In this thesis we utilize resolved stellar populations to improve our understanding of galaxy formation and evolution. In the first part we improve a method for metallicity determination of faint old stellar systems, in the second and third part we analyze the individual history of six nearby disk galaxies outside the Local Group. A New Calibration of the Color Metallicity Relation of Red Giants for HST data: It is well known, that the color distribution of stars on the the Red Giant Branch (RGB) can be used to determine metallicities of old stellar populations that have only shallow photometry. Based on the largest sample of globular clusters ever used for such studies, we quantify the relation between metallicity and color in the widely used HST ACS filters F606W and F814W. We use a sample of globular clusters from the ACS Globular Cluster Survey and measure their RGB color at given absolute magnitudes to derive the color-metallicity relation. We find a clear relation between metallicity and RGB color; we investigate the scatter and the uncertainties in this relation and show its limitations. A comparison with isochrones shows reasonably good agreement with BaSTI models, a small offset to Dartmouth models, and a larger offset to Padua models. Even for the best globular cluster data available, the metallicity of a simple stellar population can be determined from the RGB alone only with an accuracy of 0.3 dex for [M/H]<-1, and 0.15 dex for [M/H]>-1. For mixed populations, as they are observed in external galaxies, the uncertainties will be even larger due to uncertainties in extinction, age, etc. Therefore caution is necessary when interpreting photometric metallicities. The Structural History of Nearby Low Mass Disk Galaxies: We study the individual evolution histories of three nearby, low-mass, edge-on galaxies (IC5052, NGC4244, NGC5023). Using the color magnitude diagrams of resolved stellar populations, we construct star count density maps for populations of different ages and analyze the change of structural parameters with stellar age within each galaxy. The three galaxies show low vertical heating rates, which are much lower than the heating rate of the Milky Way. This indicates that heating agents, as giant molecular clouds and spiral structure are weak in low mass galaxies. We do not detect a separate thick disk in any of the three galaxies, even though our observations cover a larger range in equivalent surface brightness than any integrated light study. While scaleheights increase with age, each population can be well described by a single disk. Only two of the galaxies contain a very weak additional component, which we identify as the faint halo. The mass of these faint halos is less than 1\% of the mass of the disk. All populations in the three galaxies exhibit no or only little flaring. While this finding is consistent with previous integrated light studies, it poses strong constraints on galaxy formation models, because most theoretical simulations often find strong flaring due to interactions or radial migration. Furthermore, we find breaks in the radial profiles of all three galaxies. The radii of these breaks are independent of age, and the break strength is decreasing with age in two of the galaxies (NGC4244 and NGC5023). This is consistent with break formation models, that combine a star formation cutoff with radial migration. The differing behavior of IC5052 can be explained by a recent interaction or minor merger. The Structural History of Massive Disk Galaxies: We extend the structural analysis of stellar populations with distinct ages to three massive galaxies, NGC891, NGC4565 and NGC7814. While confusion effects due to the high stellar number densities in their central region, and the prominent dust lanes inhibit an detailed analysis of the radial profiles, we can study their vertical structure. These massive galaxies also have a slower heating than the Milky Way, comparable to the low mass galaxies. This can be traced back to their already thick young populations and thick layers of their interstellar medium. We do not find a clear separate thick disk in any of these three galaxies; all populations can be described by a single disk plus a S\'ersic bulge/halo component. In contrast to the low mass galaxies, we cannot rule out the presence of thick disks in the massive galaxies, because of the strong influence of the halo, that might hide the possible contribution of the thick disk to the vertical star count profiles. However, the faintness of the possible thick disks still points to problems in the earlier ubiquitous findings of thick disks in external galaxies.}, language = {en} } @phdthesis{TorresAcosta2015, author = {Torres Acosta, Ver{\´o}nica}, title = {Denudation processes in a tectonically active rift on different time scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84534}, school = {Universit{\"a}t Potsdam}, pages = {xv, ix, 183}, year = {2015}, abstract = {Continental rifts are excellent regions where the interplay between extension, the build-up of topography, erosion and sedimentation can be evaluated in the context of landscape evolution. Rift basins also constitute important archives that potentially record the evolution and migration of species and the change of sedimentary conditions as a result of climatic change. Finally, rifts have increasingly become targets of resource exploration, such as hydrocarbons or geothermal systems. The study of extensional processes and the factors that further modify the mainly climate-driven surface process regime helps to identify changes in past and present tectonic and geomorphic processes that are ultimately recorded in rift landscapes. The Cenozoic East African Rift System (EARS) is an exemplary continental rift system and ideal natural laboratory to observe such interactions. The eastern and western branches of the EARS constitute first-order tectonic and topographic features in East Africa, which exert a profound influence on the evolution of topography, the distribution and amount of rainfall, and thus the efficiency of surface processes. The Kenya Rift is an integral part of the eastern branch of the EARS and is characterized by high-relief rift escarpments bounded by normal faults, gently tilted rift shoulders, and volcanic centers along the rift axis. Considering the Cenozoic tectonic processes in the Kenya Rift, the tectonically controlled cooling history of rift shoulders, the subsidence history of rift basins, and the sedimentation along and across the rift, may help to elucidate the morphotectonic evolution of this extensional province. While tectonic forcing of surface processes may play a minor role in the low-strain rift on centennial to millennial timescales, it may be hypothesized that erosion and sedimentation processes impacted by climate shifts associated with pronounced changes in the availability in moisture may have left important imprints in the landscape. In this thesis I combined thermochronological, geomorphic field observations, and morphometry of digital elevation models to reconstruct exhumation processes and erosion rates, as well as the effects of climate on the erosion processes in different sectors of the rift. I present three sets of results: (1) new thermochronological data from the northern and central parts of the rift to quantitatively constrain the Tertiary exhumation and thermal evolution of the Kenya Rift. (2) 10Be-derived catchment-wide mean denudation rates from the northern, central and southern rift that characterize erosional processes on millennial to present-day timescales; and (3) paleo-denudation rates in the northern rift to constrain climatically controlled shifts in paleoenvironmental conditions during the early Holocene (African Humid Period). Taken together, my studies show that time-temperature histories derived from apatite fission track (AFT) analysis, zircon (U-Th)/He dating, and thermal modeling bracket the onset of rifting in the Kenya Rift between 65-50 Ma and about 15 Ma to the present. These two episodes are marked by rapid exhumation and, uplift of the rift shoulders. Between 45 and 15 Ma the margins of the rift experienced very slow erosion/exhumation, with the accommodation of sediments in the rift basin. In addition, I determined that present-day denudation rates in sparsely vegetated parts of the Kenya Rift amount to 0.13 mm/yr, whereas denudation rates in humid and more densely vegetated sectors of the rift flanks reach a maximum of 0.08 mm/yr, despite steeper hillslopes. I inferred that hillslope gradient and vegetation cover control most of the variation in denudation rates across the Kenya Rift today. Importantly, my results support the notion that vegetation cover plays a fundamental role in determining the voracity of erosion of hillslopes through its stabilizing effects on the land surface. Finally, in a pilot study I highlighted how paleo-denudation rates in climatic threshold areas changed significantly during times of transient hydrologic conditions and involved a sixfold increase in erosion rates during increased humidity. This assessment is based on cosmogenic nuclide (10Be) dating of quartzitic deltaic sands that were deposited in the northern Kenya Rift during a highstand of Lake Suguta, which was associated with the Holocene African Humid Period. Taken together, my new results document the role of climate variability in erosion processes that impact climatic threshold environments, which may provide a template for potential future impacts of climate-driven changes in surface processes in the course of Global Change.}, language = {en} } @phdthesis{Trauth2015, author = {Trauth, Nico}, title = {Flow and reactive transport modeling at the stream-groundwater interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82748}, school = {Universit{\"a}t Potsdam}, pages = {xv, 103}, year = {2015}, abstract = {Stream water and groundwater are important fresh water resources but their water quality is deteriorated by harmful solutes introduced by human activities. The interface between stream water and the subsurface water is an important zone for retention, transformation and attenuation of these solutes. Streambed structures enhance these processes by increased water and solute exchange across this interface, denoted as hyporheic exchange. This thesis investigates the influence of hydrological and morphological factors on hyporheic water and solute exchange as well as redox-reactions in fluvial streambed structures on the intermediate scale (10-30m). For this purpose, a three-dimensional numerical modeling approach for coupling stream water flow with porous media flow is used. Multiple steady state stream water flow scenarios over different generic pool-riffle morphologies and a natural in-stream gravel bar are simulated by a computational fluid dynamics code that provides the hydraulic head distribution at the streambed. These heads are subsequently used as the top boundary condition of a reactive transport groundwater model of the subsurface beneath the streambed. Ambient groundwater that naturally interacts with the stream water is considered in scenarios of different magnitudes of downwelling stream water (losing case) and upwelling groundwater (gaining case). Also, the neutral case, where stream stage and groundwater levels are balanced is considered. Transport of oxygen, nitrate and dissolved organic carbon and their reaction by aerobic respiration and denitrification are modeled. The results show that stream stage and discharge primarily induce hyporheic exchange flux and solute transport with implications for specific residence times and reactions at both the fully and partially submerged structures. Gaining and losing conditions significantly diminish the extent of the hyporheic zone, the water exchange flux, and shorten residence times for both the fully and partially submerged structures. With increasing magnitude of gaining or losing conditions, these metrics exponentially decrease. Stream water solutes are transported mainly advectively into the hyporheic zone and hence their influx corresponds directly to the infiltrating water flux. Aerobic respiration takes place in the shallow streambed sediments, coinciding to large parts with the extent of the hyporheic exchange flow. Denitrification occurs mainly as a "reactive fringe" surrounding the aerobic zone, where oxygen concentration is low and still a sufficient amount of stream water carbon source is available. The solute consumption rates and the efficiency of the aerobic and anaerobic reactions depend primarily on the available reactive areas and the residence times, which are both controlled by the interplay between hydraulic head distribution at the streambed and the gradients between stream stage and ambient groundwater. Highest solute consumption rates can be expected under neutral conditions, where highest solute flux, longest residence times and largest extent of the hyporheic exchange occur. The results of this thesis show that streambed structures on the intermediate scale have a significant potential to contribute to a net solute turnover that can support a healthy status of the aquatic ecosystem.}, language = {en} } @phdthesis{Vlasov2015, author = {Vlasov, Vladimir}, title = {Synchronization of oscillatory networks in terms of global variables}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78182}, school = {Universit{\"a}t Potsdam}, pages = {82}, year = {2015}, abstract = {Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models. In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling. In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases. We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling. Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations.}, language = {en} } @phdthesis{Vossenkuhl2015, author = {Vossenkuhl, Birgit}, title = {Transmission of MRSA along the meat supply chain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85918}, school = {Universit{\"a}t Potsdam}, pages = {141}, year = {2015}, abstract = {Methicillin-resistente Staphylococcus aureus (MRSA) z{\"a}hlen zu den bedeutendsten antibiotikaresistenten Pathogenen, die vor allem in Krankenh{\"a}usern aber auch außerhalb von Einrichtungen des Gesundheitswesens weit verbreitet sind. Seit einigen Jahren ist eine neue Generation von MRSA auf dem Vormarsch, die vor allem Nutztierbest{\"a}nde als neue Nische besiedelt. Diese sogenannten Nutztier-assoziierten MRSA wurden wiederholt bei wirtschaftlich bedeutenden Nutztieren sowie daraus gewonnenem Fleisch nachgewiesen. Im Rahmen der vorliegenden Arbeit wurde ein methodischer Ansatz verfolgt, um die Hypothese einer m{\"o}glichen {\"U}bertragung von Nutztier-assoziierten MRSA entlang der Lebensmittelkette vom Tier auf dessen Fleisch zu best{\"a}tigen. Angepasst an die Unterschiede in den verf{\"u}gbaren Daten wurden daf{\"u}r zwei neue Konzepte erstellt. Zur Analyse der {\"U}bertragung von MRSA entlang der Schlachtkette wurde ein mathematisches Modell des Schweineschlachtprozesses entwickelt, welches dazu geeignet ist, den Verlauf der MRSA-Pr{\"a}valenz entlang der Schlachtkette zu quantifizieren sowie kritische Prozessschritte f{\"u}r eine MRSA-{\"U}bertragung zu identifizieren. Anhand von Pr{\"a}valenzdaten ist es dem Modell m{\"o}glich, die durchschnittlichen MRSA-Eliminations- und Kontaminationsraten jedes einzelnen Prozessschrittes zu sch{\"a}tzen, die anschließend in eine Monte-Carlo-Simulation einfließen. Im Ergebnis konnte gezeigt werden, dass es generell m{\"o}glich ist, die MRSA Pr{\"a}valenz im Laufe des Schlachtprozesses auf ein niedriges finales Niveau zwischen 0,15 bis 1,15\% zu reduzieren. Vor allem das Br{\"u}hen und Abfl{\"a}mmen der Schlachtk{\"o}rper wurden als kritische Prozesse im Hinblick auf eine MRSA-Dekontamination identifiziert. In Deutschland werden regelm{\"a}ßig MRSA-Pr{\"a}valenz und Typisierungsdaten auf allen Stufen der Lebensmittelkette verschiedener Nutztiere erfasst. Um die MRSA-Daten dieser Querschnittstudie hinsichtlich einer m{\"o}glichen {\"U}bertragung entlang der Kette zu analysieren, wurde ein neuer statistischer Ansatz entwickelt. Hierf{\"u}r wurde eine Chi-Quadrat-Statistik mit der Berechnung des Czekanowski-{\"A}hnlichkeitsindex kombiniert, um Unterschiede in der Verteilung stammspezifischer Eigenschaften zwischen MRSA aus dem Stall, von Karkassen nach der Schlachtung und aus Fleisch im Einzelhandel zu quantifizieren. Die Methode wurde am Beispiel der Putenfleischkette implementiert und zudem bei der Analyse der Kalbfleischkette angewendet. Die durchgehend hohen {\"A}hnlichkeitswerte zwischen den einzelnen Proben weisen auf eine m{\"o}gliche {\"U}bertragung von MRSA entlang der Lebensmittelkette hin. Die erarbeiteten Methoden sind nicht spezifisch bez{\"u}glich Prozessketten und Pathogenen. Sie bieten somit einen großen Anwendungsbereich und erweitern das Methodenspektrum zur Bewertung bakterieller {\"U}bertragungswege.}, language = {en} } @phdthesis{Wallenta2015, author = {Wallenta, Daniel}, title = {Sequences of compact curvature}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87489}, school = {Universit{\"a}t Potsdam}, pages = {viii, 73}, year = {2015}, abstract = {By perturbing the differential of a (cochain-)complex by "small" operators, one obtains what is referred to as quasicomplexes, i.e. a sequence whose curvature is not equal to zero in general. In this situation the cohomology is no longer defined. Note that it depends on the structure of the underlying spaces whether or not an operator is "small." This leads to a magical mix of perturbation and regularisation theory. In the general setting of Hilbert spaces compact operators are "small." In order to develop this theory, many elements of diverse mathematical disciplines, such as functional analysis, differential geometry, partial differential equation, homological algebra and topology have to be combined. All essential basics are summarised in the first chapter of this thesis. This contains classical elements of index theory, such as Fredholm operators, elliptic pseudodifferential operators and characteristic classes. Moreover we study the de Rham complex and introduce Sobolev spaces of arbitrary order as well as the concept of operator ideals. In the second chapter, the abstract theory of (Fredholm) quasicomplexes of Hilbert spaces will be developed. From the very beginning we will consider quasicomplexes with curvature in an ideal class. We introduce the Euler characteristic, the cone of a quasiendomorphism and the Lefschetz number. In particular, we generalise Euler's identity, which will allow us to develop the Lefschetz theory on nonseparable Hilbert spaces. Finally, in the third chapter the abstract theory will be applied to elliptic quasicomplexes with pseudodifferential operators of arbitrary order. We will show that the Atiyah-Singer index formula holds true for those objects and, as an example, we will compute the Euler characteristic of the connection quasicomplex. In addition to this we introduce geometric quasiendomorphisms and prove a generalisation of the Lefschetz fixed point theorem of Atiyah and Bott.}, language = {en} } @phdthesis{Wettstein2015, author = {Wettstein, Christoph}, title = {Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78367}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2015}, abstract = {Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs' binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications.}, language = {en} } @phdthesis{Wieland2015, author = {Wieland, Volkmar}, title = {Particle-in-cell simulations of perpendicular supernova shock fronts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74532}, school = {Universit{\"a}t Potsdam}, pages = {v, 89}, year = {2015}, abstract = {The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.}, language = {en} } @phdthesis{Zajnulina2015, author = {Zajnulina, Marina}, title = {Optical frequency comb generation in optical fibres}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88776}, school = {Universit{\"a}t Potsdam}, pages = {xii, 103}, year = {2015}, abstract = {Optical frequency combs (OFC) constitute an array of phase-correlated equidistant spectral lines with nearly equal intensities over a broad spectral range. The adaptations of combs generated in mode-locked lasers proved to be highly efficient for the calibration of high-resolution (resolving power > 50000) astronomical spectrographs. The observation of different galaxy structures or the studies of the Milky Way are done using instruments in the low- and medium resolution range. To such instruments belong, for instance, the Multi Unit Spectroscopic Explorer (MUSE) being developed for the Very Large Telescope (VLT) of the European Southern Observatory (ESO) and the 4-metre Multi-Object Spectroscopic Telescope (4MOST) being in development for the ESO VISTA 4.1 m Telescope. The existing adaptations of OFC from mode-locked lasers are not resolvable by these instruments. Within this work, a fibre-based approach for generation of OFC specifically in the low- and medium resolution range is studied numerically. This approach consists of three optical fibres that are fed by two equally intense continuous-wave (CW) lasers. The first fibre is a conventional single-mode fibre, the second one is a suitably pumped amplifying Erbium-doped fibre with anomalous dispersion, and the third one is a low-dispersion highly nonlinear optical fibre. The evolution of a frequency comb in this system is governed by the following processes: as the two initial CW-laser waves with different frequencies propagate through the first fibre, they generate an initial comb via a cascade of four-wave mixing processes. The frequency components of the comb are phase-correlated with the original laser lines and have a frequency spacing that is equal to the initial laser frequency separation (LFS), i.e. the difference in the laser frequencies. In the time domain, a train of pre-compressed pulses with widths of a few pico-seconds arises out of the initial bichromatic deeply-modulated cosine-wave. These pulses undergo strong compression in the subsequent amplifying Erbium-doped fibre: sub-100 fs pulses with broad OFC spectra are formed. In the following low-dispersion highly nonlinear fibre, the OFC experience a further broadening and the intensity of the comb lines are fairly equalised. This approach was mathematically modelled by means of a Generalised Nonlinear Schr{\"o}dinger Equation (GNLS) that contains terms describing the nonlinear optical Kerr effect, the delayed Raman response, the pulse self-steepening, and the linear optical losses as well as the wavelength-dependent Erbium gain profile for the second fibre. The initial condition equation being a deeply-modulated cosine-wave mimics the radiation of the two initial CW lasers. The numerical studies are performed with the help of Matlab scripts that were specifically developed for the integration of the GNLS and the initial condition according to the proposed approach for the OFC generation. The scripts are based on the Fourth-Order Runge-Kutta in the Interaction Picture Method (RK4IP) in combination with the local error method. This work includes the studies and results on the length optimisation of the first and the second fibre depending on different values of the group-velocity dispersion of the first fibre. Such length optimisation studies are necessary because the OFC have the biggest possible broadband and exhibit a low level of noise exactly at the optimum lengths. Further, the optical pulse build-up in the first and the second fibre was studied by means of the numerical technique called Soliton Radiation Beat Analysis (SRBA). It was shown that a common soliton crystal state is formed in the first fibre for low laser input powers. The soliton crystal continuously dissolves into separated optical solitons as the input power increases. The pulse formation in the second fibre is critically dependent on the features of the pulses formed in the first fibre. I showed that, for low input powers, an adiabatic soliton compression delivering low-noise OFC occurs in the second fibre. At high input powers, the pulses in the first fibre have more complicated structures which leads to the pulse break-up in the second fibre with a subsequent degradation of the OFC noise performance. The pulse intensity noise studies that were performed within the framework of this thesis allow making statements about the noise performance of an OFC. They showed that the intensity noise of the whole system decreases with the increasing value of LFS.}, language = {en} } @phdthesis{Zakharova2015, author = {Zakharova, Olga}, title = {Analysis and modeling of transient earthquake patterns and their dependence on local stress regimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86455}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 94}, year = {2015}, abstract = {Investigations in the field of earthquake triggering and associated interactions, which includes aftershock triggering as well as induced seismicity, is important for seismic hazard assessment due to earthquakes destructive power. One of the approaches to study earthquake triggering and their interactions is the use of statistical earthquake models, which are based on knowledge of the basic seismicity properties, in particular, the magnitude distribution and spatiotemporal properties of the triggered events. In my PhD thesis I focus on some specific aspects of aftershock properties, namely, the relative seismic moment release of the aftershocks with respect to the mainshocks; the spatial correlation between aftershock occurrence and fault deformation; and on the influence of aseismic transients on the aftershock parameter estimation. For the analysis of aftershock sequences I choose a statistical approach, in particular, the well known Epidemic Type Aftershock Sequence (ETAS) model, which accounts for the input of background and triggered seismicity. For my specific purposes, I develop two ETAS model modifications in collaboration with Sebastian Hainzl. By means of this approach, I estimate the statistical aftershock parameters and performed simulations of aftershock sequences as well. In the case of seismic moment release of aftershocks, I focus on the ratio of cumulative seismic moment release with respect to the mainshocks. Specifically, I investigate the ratio with respect to the focal mechanism of the mainshock and estimate an effective magnitude, which represents the cumulative aftershock energy (similar to Bath's law, which defines the average difference between mainshock and the largest aftershock magnitudes). Furthermore, I compare the observed seismic moment ratios with the results of the ETAS simulations. In particular, I test a restricted ETAS (RETAS) model which is based on results of a clock advanced model and static stress triggering. To analyze spatial variations of triggering parameters I focus in my second approach on the aftershock occurrence triggered by large mainshocks and the study of the aftershock parameter distribution and their spatial correlation with the coseismic/postseismic slip and interseismic locking. To invert the aftershock parameters I improve the modified ETAS (m-ETAS) model, which is able to take the extension of the mainshock rupture into account. I compare the results obtained by the classical approach with the output of the m-ETAS model. My third approach is concerned with the temporal clustering of seismicity, which might not only be related to earthquake-earthquake interactions, but also to a time-dependent background rate, potentially biasing the parameter estimations. Thus, my coauthors and I also applied a modification of the ETAS model, which is able to take into account time-dependent background activity. It can be applicable for two different cases: when an aftershock catalog has a temporal incompleteness or when the background seismicity rate changes with time, due to presence of aseismic forces. An essential part of any research is the testing of the developed models using observational data sets, which are appropriate for the particular study case. Therefore, in the case of seismic moment release I use the global seismicity catalog. For the spatial distribution of triggering parameters I exploit two aftershock sequences of the Mw8.8 2010 Maule (Chile) and Mw 9.0 2011 Tohoku (Japan) mainshocks. In addition, I use published geodetic slip models of different authors. To test our ability to detect aseismic transients my coauthors and I use the data sets from Western Bohemia (Central Europe) and California. Our results indicate that: (1) the seismic moment of aftershocks with respect to mainshocks depends on the static stress changes and is maximal for the normal, intermediate for thrust and minimal for strike-slip stress regimes, where the RETAS model shows a good correspondence with the results; (2) The spatial distribution of aftershock parameters, obtained by the m-ETAS model, shows anomalous values in areas of reactivated crustal fault systems. In addition, the aftershock density is found to be correlated with coseismic slip gradient, afterslip, interseismic coupling and b-values. Aftershock seismic moment is positively correlated with the areas of maximum coseismic slip and interseismically locked areas. These correlations might be related to the stress level or to material properties variations in space; (3) Ignoring aseismic transient forcing or temporal catalog incompleteness can lead to the significant under- or overestimation of the underlying trigger parameters. In the case when a catalog is complete, this method helps to identify aseismic sources.}, language = {en} }