@phdthesis{Peter2019, author = {Peter, Franziska}, title = {Transition to synchrony in finite Kuramoto ensembles}, doi = {10.25932/publishup-42916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429168}, school = {Universit{\"a}t Potsdam}, pages = {vi, 93}, year = {2019}, abstract = {Synchronisation - die Ann{\"a}herung der Rhythmen gekoppelter selbst oszillierender Systeme - ist ein faszinierendes dynamisches Ph{\"a}nomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen nat{\"u}rlichen Frequenzen. Das Standardmodell f{\"u}r dieses kollektive Ph{\"a}nomen ist das Kuramoto-Modell - unter anderem aufgrund seiner L{\"o}sbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. {\"A}hnlich einem thermodynamischen Phasen{\"u}bergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den {\"U}bergang von Inkoh{\"a}renz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall m{\"o}glich ist. Zun{\"a}chst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann pr{\"u}fen wir die Abh{\"a}ngigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der nat{\"u}rlichen Frequenzverteilung f{\"u}r verschiedene Kopplungsst{\"a}rken. Wir stellen dabei zun{\"a}chst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der nat{\"u}rlichen Frequenzen abh{\"a}ngt. Beides k{\"o}nnen wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen k{\"o}nnen wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck f{\"u}r die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in koh{\"a}rent und inkoh{\"a}rent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall k{\"o}nnen die auftretenden Fluktuationen zus{\"a}tzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren n{\"a}hern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abh{\"a}ngigkeit dieses Synchronisationsmaßes vom Verh{\"a}ltnis von paarweiser nat{\"u}rlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute {\"U}bereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen.}, language = {en} }