@article{VandewalAlbrechtHokeetal.2014, author = {Vandewal, Koen and Albrecht, Steve and Hoke, Eric T. and Graham, Kenneth R. and Widmer, Johannes and Douglas, Jessica D. and Schubert, Marcel and Mateker, William R. and Bloking, Jason T. and Burkhard, George F. and Sellinger, Alan and Frechet, Jean M. J. and Amassian, Aram and Riede, Moritz K. and McGehee, Michael D. and Neher, Dieter and Salleo, Alberto}, title = {Efficient charge generation by relaxed charge-transfer states at organic interfaces}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3807}, pages = {63 -- 68}, year = {2014}, abstract = {carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90\% without the need for excess electronic or vibrational energy.}, language = {en} } @article{LiuTkachovKomberetal.2014, author = {Liu, W. and Tkachov, R. and Komber, H. and Senkovskyy, V. and Schubert, M. and Wei, Z. and Facchetti, A. and Neher, Dieter and Kiriy, A.}, title = {Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors}, series = {Polymer Chemistry}, volume = {5}, journal = {Polymer Chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c3py01707a}, pages = {3404 -- 3411}, year = {2014}, abstract = {Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to M-w approximate to 50 kg mol(-1) and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45\%) in all-polymer solar cells compared to NDI-based materials (15-30\%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.}, language = {en} } @misc{MouleNeherTurner2014, author = {Moule, Adam J. and Neher, Dieter and Turner, Sarah T.}, title = {P3HT-Based solar cells: structural properties and photovoltaic performance}, series = {Advances in Polymer Science}, volume = {265}, journal = {Advances in Polymer Science}, editor = {Ludwigs, S}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-45145-8; 978-3-662-45144-1}, issn = {0065-3195}, doi = {10.1007/12_2014_289}, pages = {181 -- 232}, year = {2014}, abstract = {Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications.}, language = {en} } @article{FoertigKniepertGlueckeretal.2014, author = {Foertig, Alexander and Kniepert, Juliane and Gluecker, Markus and Brenner, Thomas J. K. and Dyakonov, Vladimir and Neher, Dieter and Deibel, Carsten}, title = {Nongeminate and geminate recombination in PTB7: PCBM solar cells}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201302134}, pages = {1306 -- 1311}, year = {2014}, language = {en} } @article{SteyrleuthnerDiPietroCollinsetal.2014, author = {Steyrleuthner, Robert and Di Pietro, Riccardo and Collins, Brian A. and Polzer, Frank and Himmelberger, Scott and Schubert, Marcel and Chen, Zhihua and Zhang, Shiming and Salleo, Alberto and Ade, Harald W. and Facchetti, Antonio and Neher, Dieter}, title = {The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja4118736}, pages = {4245 -- 4256}, year = {2014}, language = {en} } @article{AlbrechtVandewalTumblestonetal.2014, author = {Albrecht, Steve and Vandewal, Koen and Tumbleston, John R. and Fischer, Florian S. U. and Douglas, Jessica D. and Frechet, Jean M. J. and Ludwigs, Sabine and Ade, Harald W. and Salleo, Alberto and Neher, Dieter}, title = {On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells}, series = {Advanced materials}, volume = {26}, journal = {Advanced materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201305283}, pages = {2533 -- 2539}, year = {2014}, language = {en} } @article{AlbrechtTumblestonJanietzetal.2014, author = {Albrecht, Steve and Tumbleston, John R. and Janietz, Silvia and Dumsch, Ines and Allard, Sybille and Scherf, Ullrich and Ade, Harald W. and Neher, Dieter}, title = {Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz500457b}, pages = {1131 -- 1138}, year = {2014}, abstract = {We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer.}, language = {en} } @article{ShalomInalNeheretal.2014, author = {Shalom, Menny and Inal, Sahika and Neher, Dieter and Antonietti, Markus}, title = {SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis}, series = {Catalysis today : a serial publication dealing with topical themes in catalysis and related subjects}, volume = {225}, journal = {Catalysis today : a serial publication dealing with topical themes in catalysis and related subjects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0920-5861}, doi = {10.1016/j.cattod.2013.12.013}, pages = {185 -- 190}, year = {2014}, abstract = {The effect of SiO2 nanoparticles on carbon nitride (C3N4) photoactivity performance is described. The composite SiO2-C3N4 materials exhibit a higher activity in the photo degradation of RhB dye. A detailed analysis of the chemical and optical properties of the composite C3N4 materials shows that the photo activity increases with higher SiO2 concentration. We found out that the presence of SiO2 nanoparticles strongly affects the fluorescence intensity of the matrix and life time by the creation of new energy states for charge transfer within the C3N4. Furthermore, the use of SiO2 in the synthesis of C3N4 leads to new morphology with higher surface area which results in another, secondary improvement of C3N4 photoactivity. The effect of different surfaces within C3N4 on its chemical and electronic properties is discussed and a tentative mechanism is proposed. The utilization of SiO2 nanoparticles improves both photophysical and chemical properties of C3N4 and opens new possibilities for further enhancement of C3N4 catalytic properties by the formation of composites with many other materials.}, language = {en} } @article{PradhanAlbrechtStilleretal.2014, author = {Pradhan, Basudev and Albrecht, Steve and Stiller, Burkhard and Neher, Dieter}, title = {Inverted organic solar cells comprising low-temperature-processed ZnO films}, series = {Applied physics : A, Materials science \& processing}, volume = {115}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-014-8373-8}, pages = {365 -- 369}, year = {2014}, abstract = {Inverted organic solar cells are fabricated using low-temperature-annealed ZnO film as an electron transport layer. Uniform ZnO films were prepared by spin coating a diethylzinc (DEZ) precursor solution in air, followed by annealing at 100 A degrees C. Organic solar cells prepared on these ZnO films with a 1:1 P3HT:PCBM blend as the active layer show a high power conversion efficiency of 4.03 \%, which is more than 10 \% higher than the PCE of solar cells comprising ZnO prepared via a high-temperature sol-gel route.}, language = {en} } @article{KniepertLangevanderKaapetal.2014, author = {Kniepert, Juliane and Lange, Ilja and van der Kaap, Niels J. and Koster, L. Jan Anton and Neher, Dieter}, title = {A conclusive view on charge generation, recombination, and extraction in As-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work}, series = {dvanced energy materials}, volume = {4}, journal = {dvanced energy materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201301401}, pages = {11}, year = {2014}, abstract = {Time-delayed collection field (TDCF) and bias-amplified charge extraction (BACE) are applied to as-prepared and annealed poly(3-hexylthiophene):[6,6]-phenyl C-71 butyric acid methyl ester (P3HT:PCBM) blends coated from chloroform. Despite large differences in fill factor, short-circuit current, and power conversion efficiency, both blends exhibit a negligible dependence of photogeneration on the electric field and strictly bimolecular recombination (BMR) with a weak dependence of the BMR coefficient on charge density. Drift-diffusion simulations are performed using the measured coefficients and mobilities, taking into account bimolecular recombination and the possible effects of surface recombination. The excellent agreement between the simulation and the experimental data for an intensity range covering two orders of magnitude indicates that a field-independent generation rate and a density-independent recombination coefficient describe the current-voltage characteristics of the annealed P3HT: PCBM devices, while the performance of the as-prepared blend is shown to be limited by space charge effects due to a low hole mobility. Finally, even though the bimolecular recombination coefficient is small, surface recombination is found to be a negligible loss mechanism in these solar cells.}, language = {en} } @article{DiPietroVenkateshvaranKlugetal.2014, author = {Di Pietro, Riccardo and Venkateshvaran, Deepak and Klug, Andreas and List-Kratochvil, Emil J. W. and Facchetti, Antonio and Sirringhaus, Henning and Neher, Dieter}, title = {Simultaneous extraction of charge density dependent mobility and variable contact resistance from thin film transistors}, series = {Applied physics letters}, volume = {104}, journal = {Applied physics letters}, number = {19}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4876057}, pages = {5}, year = {2014}, abstract = {A model for the extraction of the charge density dependent mobility and variable contact resistance in thin film transistors is proposed by performing a full derivation of the current-voltage characteristics both in the linear and saturation regime of operation. The calculated values are validated against the ones obtained from direct experimental methods. This approach allows unambiguous determination of gate voltage dependent contact and channel resistance from the analysis of a single device. It solves the inconsistencies in the commonly accepted mobility extraction methods and provides additional possibilities for the analysis of the injection and transport processes in semiconducting materials. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{SchubertCollinsMangoldetal.2014, author = {Schubert, Marcel and Collins, Brian A. and Mangold, Hannah and Howard, Ian A. and Schindler, Wolfram and Vandewal, Koen and Roland, Steffen and Behrends, Jan and Kraffert, Felix and Steyrleuthner, Robert and Chen, Zhihua and Fostiropoulos, Konstantinos and Bittl, Robert and Salleo, Alberto and Facchetti, Antonio and Laquai, Frederic and Ade, Harald W. and Neher, Dieter}, title = {Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201304216}, pages = {4068 -- 4081}, year = {2014}, abstract = {New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all-polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer: fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi-crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all-polymer solar cells. These issues are examined by combining structural and photo-physical characterization on a series of poly(3-hexylthiophene) (donor) and P(NDI2OD-T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo-excited charge carriers. Advanced X-ray and electron-based studies reveal the effect of chloronaphthalene co-solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, effi cient split-up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors.}, language = {en} } @article{TremelFischerKayunkidetal.2014, author = {Tremel, Kim and Fischer, Florian S. U. and Kayunkid, Navaphun and Di Pietro, Riccardo and Tkachov, Roman and Kiriy, Anton and Neher, Dieter and Ludwigs, Sabine and Brinkmann, Martin}, title = {Charge transport anisotropy in highly oriented thin films of the acceptor polymer P(NDI2OD-T2)}, series = {dvanced energy materials}, volume = {4}, journal = {dvanced energy materials}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201301659}, pages = {13}, year = {2014}, abstract = {The nanomorphology of the high mobility polymer poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} P(NDI2OD-T2) in thin films is explored as a function of different annealing conditions and correlated to optical and electrical properties. While nanofibrils with face-on orientation in form I are obtained directly after spin-coating and annealing below the melt transition temperature, clear evidence of lamellar structures is found after melt-annealing followed by slow cooling to room temperature. Interestingly these structural changes are accompanied by distinct changes in the absorption patterns. Electron diffraction measurements further show clear transitions towards predominant edge-on oriented chains in form II upon melt-annealing. Large-scale alignment with dichroic ratios up to 10 and improved order is achieved by high temperature rubbing and subsequent post-rubbing annealing. These highly oriented morphologies allow anisotropic in-plane charge transport to be probed with top-gate transistors parallel and perpendicular to the polymer chain direction. Mobilities up to 0.1 cm(2) V-1 s(-1) are observed parallel to the polymer chain, which is up to 10 times higher than those perpendicular to the polymer chain.}, language = {en} } @article{ProctorAlbrechtKuiketal.2014, author = {Proctor, Christopher M. and Albrecht, Steve and Kuik, Martijn and Neher, Dieter and Thuc-Quyen Nguyen,}, title = {Overcoming geminate recombination and enhancing extraction in solution-processed small molecule solar cells}, series = {dvanced energy materials}, volume = {4}, journal = {dvanced energy materials}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201400230}, pages = {7}, year = {2014}, language = {en} } @article{AlbrechtGrootoonkNeubertetal.2014, author = {Albrecht, Steve and Grootoonk, Bjorn and Neubert, Sebastian and Roland, Steffen and Wordenweber, Jan and Meier, Matthias and Schlatmann, Rutger and Gordijn, Aad and Neher, Dieter}, title = {Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts}, series = {Solar energy materials \& solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion}, volume = {127}, journal = {Solar energy materials \& solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-0248}, doi = {10.1016/j.solmat.2014.04.020}, pages = {157 -- 162}, year = {2014}, abstract = {In this work, the authors present a 7.5\% efficient hybrid tandem solar cell with the bottom cell made of amorphous silicon and a Si-PCPDTBT:PC70BM bulk heterojunction top cell. Loss-free recombination contacts were realized by combing Al-doped ZnO with either the conducting polymer composite PEDOT:PSS or with a bilayer of ultrathin Al and MoO3. Optimization of these contacts results in tandem cells with high fill factors of 70\% and an open circuit voltage close to the sum of those of the sub-cells. This is the best efficiency reported for this type of hybrid tandem cell so far. Optical and electrical device modeling suggests that the efficiency can be increased to similar to 12\% on combining a donor polymer with suitable absorption onset with PCBM. We also describe proof-of-principle studies employing light trapping in hybrid tandem solar cells, suggesting that this device architecture has the potential to achieve efficiencies well above 12\%. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{RolandSchubertCollinsetal.2014, author = {Roland, Steffen and Schubert, Marcel and Collins, Brian A. and Kurpiers, Jona and Chen, Zhihua and Facchetti, Antonio and Ade, Harald W. and Neher, Dieter}, title = {Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {16}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz501506z}, pages = {2815 -- 2822}, year = {2014}, abstract = {Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67\%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors.}, language = {en} } @article{GehrigRolandHowardetal.2014, author = {Gehrig, Dominik W. and Roland, Steffen and Howard, Ian A. and Kamm, Valentin and Mangold, Hannah and Neher, Dieter and Laquai, Frederic}, title = {Efficiency-limiting processes in low-bandgap polymer:Perylene diimide photovoltaic blends}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp503366m}, pages = {20077 -- 20085}, year = {2014}, abstract = {The charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the short-circuit current even further, leading to a scenario in which only around 2596 of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes.}, language = {en} } @article{XuBrennerChabanneetal.2014, author = {Xu, Jingsan and Brenner, Thomas J. K. and Chabanne, Laurent and Neher, Dieter and Antonietti, Markus and Shalom, Menny}, title = {Liquid-Based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V-oc exceeding 1 V}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {39}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja508329c}, pages = {13486 -- 13489}, year = {2014}, abstract = {Herein we report a general liquid-mediated pathway for the growth of continuous polymeric carbon nitride (C3N4) thin films. The deposition method consists of the use of supramolecular complexes that transform to the liquid state before direct thermal condensation into C3N4 solid films. The resulting films exhibit continuous porous C3N4 networks on various substrates. Moreover, the optical absorption can be easily tuned to cover the solar spectrum by the insertion of an additional molecule into the starting complex. The strength of the deposition method is demonstrated by the use of the C3N4 layer as the electron acceptor in a polymer solar cell that exhibits a remarkable open-circuit voltage exceeding 1 V. The easy, safe, and direct synthesis of carbon nitride in a continuous layered architecture on different functional substrates opens new possibilities for the fabrication of many energy-related devices.}, language = {en} } @article{XuBrennerChenetal.2014, author = {Xu, Jingsan and Brenner, Thomas J. K. and Chen, Zupeng and Neher, Dieter and Antonietti, Markus and Shalom, Menny}, title = {Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light}, series = {ACS applied materials \& interfaces}, volume = {6}, journal = {ACS applied materials \& interfaces}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am5051263}, pages = {16481 -- 16486}, year = {2014}, abstract = {Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes.}, language = {en} } @article{ShalomGuttentagFettkenhaueretal.2014, author = {Shalom, Menny and Guttentag, Miguel and Fettkenhauer, Christian and Inal, Sahika and Neher, Dieter and Llobet, Antoni and Antonietti, Markus}, title = {In situ formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble metal free photocatalysis}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {26}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/cm503258z}, pages = {5812 -- 5818}, year = {2014}, abstract = {Herein, we report the facile synthesis of an efficient roll-like carbon nitride (C3N4) photocatalyst for hydrogen production using a supramolecular complex composed of cyanuric acid, melamine, and barbituric acid as the starting monomers. Optical and photocatalytic investigations show, along with the known red shift of absorption into the visible region, that the insertion of barbituric acid results in the in situ formation of in-plane heterojuctions, which enhance the charge separation process under illumination. Moreover, platinum as the standard cocatalyst in photocatalysis could be successfully replaced with first row transition metal salts and complexes under retention of 50\% of the catalytic activity. Their mode of deposition and interaction with the semiconductor was studied in detail. Utilization of the supramolecular approach opens new opportunities to manipulate the charge transfer process within carbon nitride with respect to the design of a more efficient carbon nitride photocatalyst with controlled morphology and optical properties.}, language = {en} } @article{LiAbrechtYangetal.2014, author = {Li, Wentao and Abrecht, Steve and Yang, Liqiang and Roland, Steffen and Tumbleston, John R. and McAfee, Terry and Yan, Liang and Kelly, Mary Allison and Ade, Harald W. and Neher, Dieter and You, Wei}, title = {Mobility-controlled performance of thick solar cells based on fluorinated copolymers}, series = {Journal of the American Chemical Society}, volume = {136}, journal = {Journal of the American Chemical Society}, number = {44}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja5067724}, pages = {15566 -- 15576}, year = {2014}, abstract = {Developing novel materials and device architectures to further enhance the efficiency of polymer solar cells requires a fundamental understanding of the impact of chemical structures on photovoltaic properties. Given that device characteristics depend on many parameters, deriving structureproperty relationships has been very challenging. Here we report that a single parameter, hole mobility, determines the fill factor of several hundred nanometer thick bulk heterojunction photovoltaic devices based on a series of copolymers with varying amount of fluorine substitution. We attribute the steady increase of hole mobility with fluorine content to changes in polymer molecular ordering. Importantly, all other parameters, including the efficiency of free charge generation and the coefficient of nongeminate recombination, are nearly identical. Our work emphasizes the need to achieve high mobility in combination with strongly suppressed charge recombination for the thick devices required by mass production technologies.}, language = {en} } @article{LangeReiterPaetzeletal.2014, author = {Lange, Ilja and Reiter, Sina and Paetzel, Michael and Zykov, Anton and Nefedov, Alexei and Hildebrandt, Jana and Hecht, Stefan and Kowarik, Stefan and Woell, Christof and Heimel, Georg and Neher, Dieter}, title = {Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201401493}, pages = {7014 -- 7024}, year = {2014}, abstract = {Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers.}, language = {en} } @article{KraffertSteyrleuthnerAlbrechtetal.2014, author = {Kraffert, Felix and Steyrleuthner, Robert and Albrecht, Steve and Neher, Dieter and Scharber, Markus C. and Bittl, Robert and Behrends, Jan}, title = {Charge Separation in PCPDTBT : PCBM Blends from an EPR Perspective}, series = {The journal of physical chemistry}, volume = {118}, journal = {The journal of physical chemistry}, number = {49}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp509650v}, pages = {28482 -- 28493}, year = {2014}, language = {en} } @misc{LiuTkachovKomberetal.2014, author = {Liu, W. and Tkachov, R. and Komber, H. and Senkovskyy, V. and Schubert, M. and Wei, Z. and Facchetti, A. and Neher, Dieter and Kiriy, A.}, title = {Chain-growth polycondensation of perylene diimide-based copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98724}, pages = {8}, year = {2014}, abstract = {Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to Mw ≈ 50 kg mol-1 and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45\%) in all-polymer solar cells compared to NDI-based materials (15-30\%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.}, language = {en} }