@article{DouceSuisseGuillonetal.2011, author = {Douce, Laurent and Suisse, Jean-Moise and Guillon, Daniel and Taubert, Andreas}, title = {Imidazolium-based liquid crystals a modular platform for versatile new materials with finely tuneable properties and behaviour}, series = {Liquid crystals : an international journal of science and technology}, volume = {38}, journal = {Liquid crystals : an international journal of science and technology}, number = {11-12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0267-8292}, doi = {10.1080/02678292.2011.610474}, pages = {1653 -- 1661}, year = {2011}, abstract = {Ionic liquid Crystals constitute highly versatile materials that have drawn much interest these past few years in the fields of academic research and industrial development. In this respect, the present article is intended as an update of K. Binnemans review published in 2005, but focusing exclusively on the imidazolium cation - the most widely studied. Herein, imidazolium-containing thermotropic liquid crystalline materials will be sorted by molecular structure (mono-, bis-, poly-imidazolium compounds, with symmetrical and non-symmetrical structures) and discussed. Their physico-chemical properties will be exposed in order to adduce the relevancy and potential of the imidazolium platform in various fields of research.}, language = {en} } @phdthesis{Kirchhecker2014, author = {Kirchhecker, Sarah}, title = {Renewable imidazolium zwitterions as platform molecules for the synthesis of ionic liquids and materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77412}, school = {Universit{\"a}t Potsdam}, pages = {136}, year = {2014}, abstract = {Following the principles of green chemistry, a simple and efficient synthesis of functionalised imidazolium zwitterionic compounds from renewable resources was developed based on a modified one-pot Debus-Radziszewski reaction. The combination of different carbohydrate-derived 1,2-dicarbonyl compounds and amino acids is a simple way to modulate the properties and introduce different functionalities. A representative compound was assessed as an acid catalyst, and converted into acidic ionic liquids by reaction with several strong acids. The reactivity of the double carboxylic functionality was explored by esterification with long and short chain alcohols, as well as functionalised amines, which led to the straightforward formation of surfactant-like molecules or bifunctional esters and amides. One of these di-esters is currently being investigated for the synthesis of poly(ionic liquids). The functionalisation of cellulose with one of the bifunctional esters was investigated and preliminary tests employing it for the functionalisation of filter papers were carried out successfully. The imidazolium zwitterions were converted into ionic liquids via hydrothermal decarboxylation in flow, a benign and scalable technique. This method provides access to imidazolium ionic liquids via a simple and sustainable methodology, whilst completely avoiding contamination with halide salts. Different ionic liquids can be generated depending on the functionality contained in the ImZw precursor. Two alanine-derived ionic liquids were assessed for their physicochemical properties and applications as solvents for the dissolution of cellulose and the Heck coupling.}, language = {en} } @article{XieTaubert2011, author = {Xie, Zai-Lai and Taubert, Andreas}, title = {Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4]}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201000808}, pages = {364 -- 368}, year = {2011}, abstract = {The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35\% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40\% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.}, language = {en} }