@article{GharibSchaubMercer2007, author = {Gharib, Mona and Schaub, Torsten H. and Mercer, Robert E.}, title = {Incremental answer set programming : a preliminary report}, year = {2007}, language = {en} } @article{DelgrandeSchaubTompits2007, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A general framework for expressing preferences in causal reasoning and planning}, issn = {0955-792X}, doi = {10.1093/logcom/exm046}, year = {2007}, abstract = {We consider the problem of representing arbitrary preferences in causal reasoning and planning systems. In planning, a preference may be seen as a goal or constraint that is desirable, but not necessary, to satisfy. To begin, we define a very general query language for histories, or interleaved sequences of world states and actions. Based on this, we specify a second language in which preferences are defined. A single preference defines a binary relation on histories, indicating that one history is preferred to the other. From this, one can define global preference orderings on the set of histories, the maximal elements of which are the preferred histories. The approach is very general and flexible; thus it constitutes a base language in terms of which higher-level preferences may be defined. To this end, we investigate two fundamental types of preferences that we call choice and temporal preferences. We consider concrete strategies for these types of preferences and encode them in terms of our framework. We suggest how to express aggregates in the approach, allowing, e.g. the expression of a preference for histories with lowest total action costs. Last, our approach can be used to express other approaches and so serves as a common framework in which such approaches can be expressed and compared. We illustrate this by indicating how an approach due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3.}, language = {en} } @article{BrainFaberMarateaetal.2007, author = {Brain, Martin and Faber, Wolfgang and Maratea, Marco and Polleres, Axel and Schaub, Torsten H. and Schindlauer, Roman}, title = {What should an ASP solver output? : a multiple position paper}, year = {2007}, language = {en} } @article{DelgrandeLiuSchaubetal.2007, author = {Delgrande, James Patrick and Liu, Daphne H. and Schaub, Torsten H. and Thiele, Sven}, title = {COBA 2.0 : a consistency-based belief change system}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten H.}, title = {Conflict-driven answer set solving}, isbn = {978-1-57735-323-2}, year = {2007}, language = {en} } @article{GebserLeeLierler2007, author = {Gebser, Martin and Lee, Joohyung and Lierler, Yuliya}, title = {Head-elementary-set-free logic programs}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten H.}, title = {Conflict-driven answer set enumeration}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserKaufmannNeumannetal.2007, author = {Gebser, Martin and Kaufmann, Benjamin and Neumann, Andr{\´e} and Schaub, Torsten H.}, title = {Clasp : a conflict-driven answer set solver}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Debugging ASP programs by means of ASP}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserSchaubTompitsetal.2007, author = {Gebser, Martin and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report}, year = {2007}, language = {en} } @article{BrainGebserPuehreretal.2007, author = {Brain, Martin and Gebser, Martin and P{\"u}hrer, J{\"o}rg and Schaub, Torsten H. and Tompits, Hans and Woltran, Stefan}, title = {"That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description}, year = {2007}, language = {en} } @article{GebserSchaub2007, author = {Gebser, Martin and Schaub, Torsten H.}, title = {Generic tableaux for answer set programming}, year = {2007}, language = {en} } @article{GebserGharibSchaub2007, author = {Gebser, Martin and Gharib, Mona and Schaub, Torsten H.}, title = {Incremental answer sets and their computation}, year = {2007}, language = {en} } @article{DelgrandeSchaub2007, author = {Delgrande, James Patrick and Schaub, Torsten H.}, title = {A consistency-based framework for merging knowledge bases}, issn = {1570-8683}, year = {2007}, language = {en} } @article{JeskeLuckowSchnor2007, author = {Jeske, Janin and Luckow, Andr{\´e} and Schnor, Bettina}, title = {Reservation-based Resource-Brokering for Grid Computing}, year = {2007}, abstract = {In this paper we present the design and implementation of the Migol brokering framework. Migol is a Grid middleware, which addresses the fault-tolerance of long-running and compute-intensive applications. The framework supports e. g. the automatic and transparent recovery respectively the migration of applications. Another core feature of Migol is the discovery, selection, and allocation of resources using advance reservation. Grid broker systems can significantly benefit from advance reservation. With advance reservation brokers and users can obtain execution guarantees from local resource management systems (LRM) without requiring detailed knowledge of current and future workloads or of the resource owner's policies. Migol's Advance Reservation Service (ARS) provides an adapter layer for reservation capabilities of different LRMs, which is currently not provided by existing Grid middleware platforms. Further, we propose a shortest expected delay (SED) strategy for scheduling of advance reservations within the Job Broker Service. SED needs information about the earliest start time of an application. This is currently not supported by LRMs. We added this feature for PBSPro. Migol depends on Globus and its security infrastructure. Our performance experiments show the substantial overhead of this serviceoriented approach.}, language = {en} } @article{GebserLiuNamasivayametal.2007, author = {Gebser, Martin and Liu, Lengning and Namasivayam, Gayathri and Neumann, Andr{\´e} and Schaub, Torsten H. and Truszczynski, Miroslaw}, title = {The first answer set programming system competition}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{GebserSchaubThiele2007, author = {Gebser, Martin and Schaub, Torsten H. and Thiele, Sven}, title = {GrinGo : a new grounder for answer set programming}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @article{DelgrandeLangSchaub2007, author = {Delgrande, James Patrick and Lang, J{\´e}r{\^o}me and Schaub, Torsten H.}, title = {Belief change based on global minimisation}, year = {2007}, language = {en} } @article{MileoSchaub2007, author = {Mileo, Alessandra and Schaub, Torsten H.}, title = {Qualitative constraint enforcement in advanced policy specification}, year = {2007}, language = {en} } @article{DelgrandeSchaubTompits2007, author = {Delgrande, James Patrick and Schaub, Torsten H. and Tompits, Hans}, title = {A preference-based framework for updating logic programs}, isbn = {978-3-540- 72199-4}, year = {2007}, language = {en} } @phdthesis{Rzeha2007, author = {Rzeha, Jan}, title = {Generation and Storage of Diagnosis Data On-Chip}, address = {Potsdam}, pages = {VII, 94 S. : graph. Darst.}, year = {2007}, language = {en} } @book{PolyvyanyyKuropka2007, author = {Polyvyanyy, Artem and Kuropka, Dominik}, title = {A Quantitative Evalution of the Enhanced Topic-based Vector Space Model}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsda}, volume = {19}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsda}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-95-7}, issn = {1613-5652}, pages = {88 S.}, year = {2007}, language = {en} } @book{AbrahamssonBaddooMargariaetal.2007, author = {Abrahamsson, Pekka and Baddoo, Nathan and Margaria, Tiziana and Messnarz, Richard}, title = {Software Process Improvement : 14th europea conference, EuroSpi 2007, Potsdam, Germany, September 26-28, 2007 ; Proceedings}, series = {Lecture Notes in Computer Science}, volume = {4764}, journal = {Lecture Notes in Computer Science}, publisher = {Springer}, address = {Berlin}, pages = {223 S.}, year = {2007}, language = {en} } @book{Margaria2007, author = {Margaria, Tiziana}, title = {Proceedings / EuroSPI 2007, European Software Process Improvement, 26.-28.09.2007, University of Potsdam, Germany}, editor = {Messnarz, Richard}, publisher = {ASQF}, address = {Erlangen}, isbn = {978-3-9809145-6-7}, pages = {Getr. Z{\"a}hl.}, year = {2007}, language = {en} } @book{Weske2007, author = {Weske, Mathias}, title = {Business Process Management : Concepts, Languages, Architectures}, publisher = {Springer-Verlag Berlin Heidelberg}, address = {Berlin, Heidelberg}, isbn = {978-3-540-73521-2}, doi = {10.1007/978-3-540-73522-9}, pages = {368 S.}, year = {2007}, language = {en} } @phdthesis{Puhlmann2007, author = {Puhlmann, Frank}, title = {On the application of a theory for mobile systems to business process management}, address = {Potsdam}, pages = {xiv, 219 S. : graph. Darst.}, year = {2007}, language = {en} } @book{MargariaKubczakSteffen2007, author = {Margaria, Tiziana and Kubczak, Christian and Steffen, Bernhard}, title = {Bio-jETI: a Service Integration, Design, and Provisioning Platform for Orchestrated Bioinformatics Processes - ("part of From Components to Processes")}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 4}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {16 S.}, year = {2007}, language = {en} } @book{LamprechtMagariaSteffenetal.2007, author = {Lamprecht, Anna-Lena and Magaria, Tiziana and Steffen, Bernhard and Sczyrba, Alexander and Hartmeier, Sven and Giegerich, Robert}, title = {GeneFisher-P}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 3}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {17 S.}, year = {2007}, language = {en} } @misc{MarquesdeCarvalhoJuergensen2007, author = {Marques de Carvalho, Jackson W. and J{\"u}rgensen, Helmut}, title = {Flexible Structured Mathematics Notation : IADIS, International Conference Interfaces and Human Computer Interaction, Lisabon, 2007}, series = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, volume = {2007, 1}, journal = {Preprint / Universit{\"a}t Potsdam, Institut f{\"u}r Informatik}, publisher = {Univ.}, address = {Potsdam}, issn = {0946-7580}, pages = {5 S.}, year = {2007}, language = {en} } @article{SchneidenbachSchnor2007, author = {Schneidenbach, Lars and Schnor, Bettina}, title = {Design Issues in the Implementation of MPI2 One Sided Communication in Ethernet based Networks}, isbn = {978-0-88986-637-9}, year = {2007}, abstract = {In current research, one sided communication of the MPI2 standard is pushed as a promising technique [6, 7, 10, 18]. But measurements of applications and MPI2 primitives show a different picture [17]. In this paper we analyze de sign issues of MPI2 one sided communication and its im plementations. We focus on asynchronous communication for parallel applications in Ethernet cluster environments. Further, one sided communication is compared to two sided communication. This paper will prove that the key problem to performance is not only the implementation of MPI2 one sided communication - it is the design.}, language = {en} } @article{HoheiselMuellerSchnor2007, author = {Hoheisel, A. and M{\"u}ller, S. and Schnor, Bettina}, title = {Fine-grained Security Management in a Service-oriented Grid Architecture}, isbn = {978-0-387-72811-7}, year = {2007}, language = {en} } @misc{Trapp2007, type = {Master Thesis}, author = {Trapp, Matthias}, title = {Analysis and exploration of virtual 3D city models using 3D information lenses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13930}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This thesis addresses real-time rendering techniques for 3D information lenses based on the focus \& context metaphor. It analyzes, conceives, implements, and reviews its applicability to objects and structures of virtual 3D city models. In contrast to digital terrain models, the application of focus \& context visualization to virtual 3D city models is barely researched. However, the purposeful visualization of contextual data of is extreme importance for the interactive exploration and analysis of this field. Programmable hardware enables the implementation of new lens techniques, that allow the augmentation of the perceptive and cognitive quality of the visualization compared to classical perspective projections. A set of 3D information lenses is integrated into a 3D scene-graph system: • Occlusion lenses modify the appearance of virtual 3D city model objects to resolve their occlusion and consequently facilitate the navigation. • Best-view lenses display city model objects in a priority-based manner and mediate their meta information. Thus, they support exploration and navigation of virtual 3D city models. • Color and deformation lenses modify the appearance and geometry of 3D city models to facilitate their perception. The presented techniques for 3D information lenses and their application to virtual 3D city models clarify their potential for interactive visualization and form a base for further development.}, language = {en} } @article{Arnold2007, author = {Arnold, Holger}, title = {A linearized DPLL calculus with learning}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15421}, year = {2007}, abstract = {This paper describes the proof calculus LD for clausal propositional logic, which is a linearized form of the well-known DPLL calculus extended by clause learning. It is motivated by the demand to model how current SAT solvers built on clause learning are working, while abstracting from decision heuristics and implementation details. The calculus is proved sound and terminating. Further, it is shown that both the original DPLL calculus and the conflict-directed backtracking calculus with clause learning, as it is implemented in many current SAT solvers, are complete and proof-confluent instances of the LD calculus.}, language = {en} } @phdthesis{Prohaska2007, author = {Prohaska, Steffen}, title = {Skeleton-based visualization of massive voxel objects with network-like architecture}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14888}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work introduces novel internal and external memory algorithms for computing voxel skeletons of massive voxel objects with complex network-like architecture and for converting these voxel skeletons to piecewise linear geometry, that is triangle meshes and piecewise straight lines. The presented techniques help to tackle the challenge of visualizing and analyzing 3d images of increasing size and complexity, which are becoming more and more important in, for example, biological and medical research. Section 2.3.1 contributes to the theoretical foundations of thinning algorithms with a discussion of homotopic thinning in the grid cell model. The grid cell model explicitly represents a cell complex built of faces, edges, and vertices shared between voxels. A characterization of pairs of cells to be deleted is much simpler than characterizations of simple voxels were before. The grid cell model resolves topologically unclear voxel configurations at junctions and locked voxel configurations causing, for example, interior voxels in sets of non-simple voxels. A general conclusion is that the grid cell model is superior to indecomposable voxels for algorithms that need detailed control of topology. Section 2.3.2 introduces a noise-insensitive measure based on the geodesic distance along the boundary to compute two-dimensional skeletons. The measure is able to retain thin object structures if they are geometrically important while ignoring noise on the object's boundary. This combination of properties is not known of other measures. The measure is also used to guide erosion in a thinning process from the boundary towards lines centered within plate-like structures. Geodesic distance based quantities seem to be well suited to robustly identify one- and two-dimensional skeletons. Chapter 6 applies the method to visualization of bone micro-architecture. Chapter 3 describes a novel geometry generation scheme for representing voxel skeletons, which retracts voxel skeletons to piecewise linear geometry per dual cube. The generated triangle meshes and graphs provide a link to geometry processing and efficient rendering of voxel skeletons. The scheme creates non-closed surfaces with boundaries, which contain fewer triangles than a representation of voxel skeletons using closed surfaces like small cubes or iso-surfaces. A conclusion is that thinking specifically about voxel skeleton configurations instead of generic voxel configurations helps to deal with the topological implications. The geometry generation is one foundation of the applications presented in Chapter 6. Chapter 5 presents a novel external memory algorithm for distance ordered homotopic thinning. The presented method extends known algorithms for computing chamfer distance transformations and thinning to execute I/O-efficiently when input is larger than the available main memory. The applied block-wise decomposition schemes are quite simple. Yet it was necessary to carefully analyze effects of block boundaries to devise globally correct external memory variants of known algorithms. In general, doing so is superior to naive block-wise processing ignoring boundary effects. Chapter 6 applies the algorithms in a novel method based on confocal microscopy for quantitative study of micro-vascular networks in the field of microcirculation.}, language = {en} } @phdthesis{Jiang2007, author = {Jiang, Chunyan}, title = {Multi-visualization and hybrid segmentation approaches within telemedicine framework}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12829}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The innovation of information techniques has changed many aspects of our life. In health care field, we can obtain, manage and communicate high-quality large volumetric image data by computer integrated devices, to support medical care. In this dissertation I propose several promising methods that could assist physicians in processing, observing and communicating the image data. They are included in my three research aspects: telemedicine integration, medical image visualization and image segmentation. And these methods are also demonstrated by the demo software that I developed. One of my research point focuses on medical information storage standard in telemedicine, for example DICOM, which is the predominant standard for the storage and communication of medical images. I propose a novel 3D image data storage method, which was lacking in current DICOM standard. I also created a mechanism to make use of the non-standard or private DICOM files. In this thesis I present several rendering techniques on medical image visualization to offer different display manners, both 2D and 3D, for example, cut through data volume in arbitrary degree, rendering the surface shell of the data, and rendering the semi-transparent volume of the data. A hybrid segmentation approach, designed for semi-automated segmentation of radiological image, such as CT, MRI, etc, is proposed in this thesis to get the organ or interested area from the image. This approach takes advantage of the region-based method and boundary-based methods. Three steps compose the hybrid approach: the first step gets coarse segmentation by fuzzy affinity and generates homogeneity operator; the second step divides the image by Voronoi Diagram and reclassifies the regions by the operator to refine segmentation from the previous step; the third step handles vague boundary by level set model. Topics for future research are mentioned in the end, including new supplement for DICOM standard for segmentation information storage, visualization of multimodal image information, and improvement of the segmentation approach to higher dimension.}, language = {en} } @phdthesis{Konczak2007, author = {Konczak, Kathrin}, title = {Preferences in answer set programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12058}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm, having its roots in nonmonotonic reasoning, deductive databases, and logic programming with negation as failure. The basic idea of ASP is to represent a computational problem as a logic program whose answer sets correspond to solutions, and then to use an answer set solver for finding answer sets of the program. ASP is particularly suited for solving NP-complete search problems. Among these, we find applications to product configuration, diagnosis, and graph-theoretical problems, e.g. finding Hamiltonian cycles. On different lines of ASP research, many extensions of the basic formalism have been proposed. The most intensively studied one is the modelling of preferences in ASP. They constitute a natural and effective way of selecting preferred solutions among a plethora of solutions for a problem. For example, preferences have been successfully used for timetabling, auctioning, and product configuration. In this thesis, we concentrate on preferences within answer set programming. Among several formalisms and semantics for preference handling in ASP, we concentrate on ordered logic programs with the underlying D-, W-, and B-semantics. In this setting, preferences are defined among rules of a logic program. They select preferred answer sets among (standard) answer sets of the underlying logic program. Up to now, those preferred answer sets have been computed either via a compilation method or by meta-interpretation. Hence, the question comes up, whether and how preferences can be integrated into an existing ASP solver. To solve this question, we develop an operational graph-based framework for the computation of answer sets of logic programs. Then, we integrate preferences into this operational approach. We empirically observe that our integrative approach performs in most cases better than the compilation method or meta-interpretation. Another research issue in ASP are optimization methods that remove redundancies, as also found in database query optimizers. For these purposes, the rather recently suggested notion of strong equivalence for ASP can be used. If a program is strongly equivalent to a subprogram of itself, then one can always use the subprogram instead of the original program, a technique which serves as an effective optimization method. Up to now, strong equivalence has not been considered for logic programs with preferences. In this thesis, we tackle this issue and generalize the notion of strong equivalence to ordered logic programs. We give necessary and sufficient conditions for the strong equivalence of two ordered logic programs. Furthermore, we provide program transformations for ordered logic programs and show in how far preferences can be simplified. Finally, we present two new applications for preferences within answer set programming. First, we define new procedures for group decision making, which we apply to the problem of scheduling a group meeting. As a second new application, we reconstruct a linguistic problem appearing in German dialects within ASP. Regarding linguistic studies, there is an ongoing debate about how unique the rule systems of language are in human cognition. The reconstruction of grammatical regularities with tools from computer science has consequences for this debate: if grammars can be modelled this way, then they share core properties with other non-linguistic rule systems.}, language = {en} }