@phdthesis{Hu2006, author = {Hu, Ji}, title = {A virtual machine architecture for IT-security laboratories}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7818}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis discusses challenges in IT security education, points out a gap between e-learning and practical education, and presents a work to fill the gap. E-learning is a flexible and personalized alternative to traditional education. Nonetheless, existing e-learning systems for IT security education have difficulties in delivering hands-on experience because of the lack of proximity. Laboratory environments and practical exercises are indispensable instruction tools to IT security education, but security education in conventional computer laboratories poses particular problems such as immobility as well as high creation and maintenance costs. Hence, there is a need to effectively transform security laboratories and practical exercises into e-learning forms. In this thesis, we introduce the Tele-Lab IT-Security architecture that allows students not only to learn IT security principles, but also to gain hands-on security experience by exercises in an online laboratory environment. In this architecture, virtual machines are used to provide safe user work environments instead of real computers. Thus, traditional laboratory environments can be cloned onto the Internet by software, which increases accessibility to laboratory resources and greatly reduces investment and maintenance costs. Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed to provide effective functionalities, reliability, security, and performance. The virtual machines with appropriate resource allocation, software installation, and system configurations are used to build lightweight security laboratories on a hosting computer. Reliability and availability of laboratory platforms are covered by a virtual machine management framework. This management framework provides necessary monitoring and administration services to detect and recover critical failures of virtual machines at run time. Considering the risk that virtual machines can be misused for compromising production networks, we present a security management solution to prevent the misuse of laboratory resources by security isolation at the system and network levels. This work is an attempt to bridge the gap between e-learning/tele-teaching and practical IT security education. It is not to substitute conventional teaching in laboratories but to add practical features to e-learning. This thesis demonstrates the possibility to implement hands-on security laboratories on the Internet reliably, securely, and economically.}, subject = {Computersicherheit}, language = {en} } @phdthesis{Huang2006, author = {Huang, Wanjun}, title = {Temporary binding for dynamic middleware construction and web services composition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7672}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {With increasing number of applications in Internet and mobile environments, distributed software systems are demanded to be more powerful and flexible, especially in terms of dynamism and security. This dissertation describes my work concerning three aspects: dynamic reconfiguration of component software, security control on middleware applications, and web services dynamic composition. Firstly, I proposed a technology named Routing Based Workflow (RBW) to model the execution and management of collaborative components and realize temporary binding for component instances. The temporary binding means component instances are temporarily loaded into a created execution environment to execute their functions, and then are released to their repository after executions. The temporary binding allows to create an idle execution environment for all collaborative components, on which the change operations can be immediately carried out. The changes on execution environment will result in a new collaboration of all involved components, and also greatly simplifies the classical issues arising from dynamic changes, such as consistency preserving etc. To demonstrate the feasibility of RBW, I created a dynamic secure middleware system - the Smart Data Server Version 3.0 (SDS3). In SDS3, an open source implementation of CORBA is adopted and modified as the communication infrastructure, and three secure components managed by RBW, are created to enhance the security on the access of deployed applications. SDS3 offers multi-level security control on its applications from strategy control to application-specific detail control. For the management by RBW, the strategy control of SDS3 applications could be dynamically changed by reorganizing the collaboration of the three secure components. In addition, I created the Dynamic Services Composer (DSC) based on Apache open source projects, Apache Axis and WSIF. In DSC, RBW is employed to model the interaction and collaboration of web services and to enable the dynamic changes on the flow structure of web services. Finally, overall performance tests were made to evaluate the efficiency of the developed RBW and SDS3. The results demonstrated that temporary binding of component instances makes slight impacts on the execution efficiency of components, and the blackout time arising from dynamic changes can be extremely reduced in any applications.}, subject = {Middleware}, language = {en} } @phdthesis{Dornhege2006, author = {Dornhege, Guido}, title = {Increasing information transfer rates for brain-computer interfacing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7690}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert M{\"u}ller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate fields such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made. In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points: Establishing a performance measure based on information theory: I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable. Transfer and development of suitable signal processing and machine learning techniques: One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 \%. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually. Implementation of the Berlin brain computer interface and realization of suitable experiments: Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful.}, subject = {Kybernetik}, language = {en} } @phdthesis{Floeter2005, author = {Fl{\"o}ter, Andr{\´e}}, title = {Analyzing biological expression data based on decision tree induction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6416}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Modern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples. Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information. At present, various methods are used for this purpose. One superordinate class of these meth­ods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models. Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees. The concept of comparing sets of decision trees is developed. This method offers the pos­sibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the un­derstanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction. A second approach exploits the structure of sets of decision trees for the discovery of com­binatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees ­ a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations. Both the introduced methods are available as software tools. They can be applied consecu­tively or separately. That way they make up a package of analytical tools that usefully supplement existing methods. By means of these tools, the newly introduced methods were able to confirm existing knowl­edge and to suggest interesting and new relationships between metabolites.}, subject = {Molekulare Bioinformatik}, language = {en} } @phdthesis{Ghasemzadeh2005, author = {Ghasemzadeh, Mohammad}, title = {A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6378}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial.}, subject = {Bin{\"a}res Entscheidungsdiagramm}, language = {en} } @phdthesis{Ziehe2005, author = {Ziehe, Andreas}, title = {Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5694}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This thesis is concerned with the solution of the blind source separation problem (BSS). The BSS problem occurs frequently in various scientific and technical applications. In essence, it consists in separating meaningful underlying components out of a mixture of a multitude of superimposed signals. In the recent research literature there are two related approaches to the BSS problem: The first is known as Independent Component Analysis (ICA), where the goal is to transform the data such that the components become as independent as possible. The second is based on the notion of diagonality of certain characteristic matrices derived from the data. Here the goal is to transform the matrices such that they become as diagonal as possible. In this thesis we study the latter method of approximate joint diagonalization (AJD) to achieve a solution of the BSS problem. After an introduction to the general setting, the thesis provides an overview on particular choices for the set of target matrices that can be used for BSS by joint diagonalization. As the main contribution of the thesis, new algorithms for approximate joint diagonalization of several matrices with non-orthogonal transformations are developed. These newly developed algorithms will be tested on synthetic benchmark datasets and compared to other previous diagonalization algorithms. Applications of the BSS methods to biomedical signal processing are discussed and exemplified with real-life data sets of multi-channel biomagnetic recordings.}, subject = {Signaltrennung}, language = {en} } @phdthesis{Harmeling2004, author = {Harmeling, Stefan}, title = {Independent component analysis and beyond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001540}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {'Independent component analysis' (ICA) ist ein Werkzeug der statistischen Datenanalyse und Signalverarbeitung, welches multivariate Signale in ihre Quellkomponenten zerlegen kann. Obwohl das klassische ICA Modell sehr n{\"u}tzlich ist, gibt es viele Anwendungen, die Erweiterungen von ICA erfordern. In dieser Dissertation pr{\"a}sentieren wir neue Verfahren, die die Funktionalit{\"a}t von ICA erweitern: (1) Zuverl{\"a}ssigkeitsanalyse und Gruppierung von unabh{\"a}ngigen Komponenten durch Hinzuf{\"u}gen von Rauschen, (2) robuste und {\"u}berbestimmte ('over-complete') ICA durch Ausreissererkennung, und (3) nichtlineare ICA mit Kernmethoden.}, language = {en} } @phdthesis{Lanfermann2002, author = {Lanfermann, Gerd}, title = {Nomadic migration : a service environment for autonomic computing on the Grid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000773}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {In den vergangenen Jahren ist es zu einer dramatischen Vervielfachung der verf{\"u}gbaren Rechenzeit gekommen. Diese 'Grid Ressourcen' stehen jedoch nicht als kontinuierlicher Strom zur Verf{\"u}gung, sondern sind {\"u}ber verschiedene Maschinentypen, Plattformen und Betriebssysteme verteilt, die jeweils durch Netzwerke mit fluktuierender Bandbreite verbunden sind. Es wird f{\"u}r Wissenschaftler zunehmend schwieriger, die verf{\"u}gbaren Ressourcen f{\"u}r ihre Anwendungen zu nutzen. Wir glauben, dass intelligente, selbstbestimmende Applikationen in der Lage sein sollten, ihre Ressourcen in einer dynamischen und heterogenen Umgebung selbst zu w{\"a}hlen: Migrierende Applikationen suchen eine neue Ressource, wenn die alte aufgebraucht ist. 'Spawning'-Anwendungen lassen Algorithmen auf externen Maschinen laufen, um die Hauptanwendung zu beschleunigen. Applikationen werden neu gestartet, sobald ein Absturz endeckt wird. Alle diese Verfahren k{\"o}nnen ohne menschliche Interaktion erfolgen. Eine verteilte Rechenumgebung besitzt eine nat{\"u}rliche Unverl{\"a}sslichkeit. Jede Applikation, die mit einer solchen Umgebung interagiert, muss auf die gest{\"o}rten Komponenten reagieren k{\"o}nnen: schlechte Netzwerkverbindung, abst{\"u}rzende Maschinen, fehlerhafte Software. Wir konstruieren eine verl{\"a}ssliche Serviceinfrastruktur, indem wir der Serviceumgebung eine 'Peer-to-Peer'-Topology aufpr{\"a}gen. Diese "Grid Peer Service" Infrastruktur beinhaltet Services wie Migration und Spawning, als auch Services zum Starten von Applikationen, zur Datei{\"u}bertragung und Auswahl von Rechenressourcen. Sie benutzt existierende Gridtechnologie wo immer m{\"o}glich, um ihre Aufgabe durchzuf{\"u}hren. Ein Applikations-Information- Server arbeitet als generische Registratur f{\"u}r alle Teilnehmer in der Serviceumgebung. Die Serviceumgebung, die wir entwickelt haben, erlaubt es Applikationen z.B. eine Relokationsanfrage an einen Migrationsserver zu stellen. Der Server sucht einen neuen Computer, basierend auf den {\"u}bermittelten Ressourcen-Anforderungen. Er transferiert den Statusfile des Applikation zu der neuen Maschine und startet die Applikation neu. Obwohl das umgebende Ressourcensubstrat nicht kontinuierlich ist, k{\"o}nnen wir kontinuierliche Berechnungen auf Grids ausf{\"u}hren, indem wir die Applikation migrieren. Wir zeigen mit realistischen Beispielen, wie sich z.B. ein traditionelles Genom-Analyse-Programm leicht modifizieren l{\"a}sst, um selbstbestimmte Migrationen in dieser Serviceumgebung durchzuf{\"u}hren.}, subject = {Peer-to-Peer-Netz ; GRID computing ; Zuverl{\"a}ssigkeit ; Web Services ; Betriebsmittelverwaltung ; Migration}, language = {en} } @phdthesis{Dramlitsch2002, author = {Dramlitsch, Thomas}, title = {Distributed computations in a dynamic, heterogeneous Grid environment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000759}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren {\"u}ber Hochgeschwindigkeitsnetzwerke erm{\"o}glicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit auseinanderliegende Rechenkapazit{\"a}ten zu einer Gesamtheit zusammengefasst werden k{\"o}nnen. Dieser so entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt werden Probleme zu berechnen, f{\"u}r die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch mit heutigen Rechenkapazit{\"a}ten nicht l{\"o}sbar sind, erstrecken sich durch s{\"a}mtliche Gebiete der heutigen Wissenschaft, angefangen von Astrophysik, Molek{\"u}lphysik, Bioinformatik, Meteorologie, bis hin zur Zahlentheorie und Fluiddynamik um nur einige Gebiete zu nennen. Je nach Art der Problemstellung und des L{\"o}sungsverfahrens gestalten sich solche "Meta-Berechnungen" mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren) herrscht. Dies ist dadurch begr{\"u}ndet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren auf demselben Grossrechner oder Cluster um zwei bis vier Gr{\"o}ssenordnungen h{\"o}her bzw. niedriger liegen als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen. Dennoch bricht nunmehr eine Zeit an, in der es m{\"o}glich ist Berechnungen auf solch virtuellen Supercomputern auch mit kommunikationsintensiven Programmen durchzuf{\"u}hren. Eine grosse Klasse von kommunikations- und berechnungsintensiven Programmen ist diejenige, die die L{\"o}sung von Differentialgleichungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur effizienteren Durchf{\"u}hrung von solch verteilten Berechnungen werden entwickelt, analysiert und implementiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so zu erweitern, dass sie vorhandene Informationen (z.B. verf{\"u}gbar durch das Globus Toolkit) {\"u}ber Maschinen und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformationen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit f{\"u}r die Ausf{\"u}hrung auf Grossrechnern oder Clustern entwickelt wurde.}, language = {en} } @phdthesis{Raetsch2001, author = {R{\"a}tsch, Gunnar}, title = {Robust boosting via convex optimization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000399}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugeh{\"o}rigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Absch{\"a}tzung der Vorhersagequalit{\"a}t auf ungesehenen Mustern. K{\"u}rzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalit{\"a}t der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu l{\"o}sen, deren L{\"o}sung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien f{\"u}r eine große Familie von Boosting-{\"a}hnlichen Algorithmen zu geben. o Kann man Boosting robust gegen{\"u}ber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivit{\"a}t gegen{\"u}ber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting {\"u}bertragen. Das f{\"u}hrt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden urspr{\"u}nglich f{\"u}r Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-{\"a}hnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tats{\"a}chlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-{\"U}berwachungssystem und bei der Entwicklung neuer Medikamente illustriert.}, language = {en} } @phdthesis{Seuring2000, author = {Seuring, Markus}, title = {Output space compaction for testing and concurrent checking}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000165}, school = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {In der Dissertation werden neue Entwurfsmethoden f{\"u}r Kompaktoren f{\"u}r die Ausg{\"a}nge von digitalen Schaltungen beschrieben, die die Anzahl der zu testenden Ausg{\"a}nge drastisch verkleinern und dabei die Testbarkeit der Schaltungen nur wenig oder gar nicht verschlechtern. Der erste Teil der Arbeit behandelt f{\"u}r kombinatorische Schaltungen Methoden, die die Struktur der Schaltungen beim Entwurf der Kompaktoren ber{\"u}cksichtigen. Verschiedene Algorithmen zur Analyse von Schaltungsstrukturen werden zum ersten Mal vorgestellt und untersucht. Die Komplexit{\"a}t der vorgestellten Verfahren zur Erzeugung von Kompaktoren ist linear bez{\"u}glich der Anzahl der Gatter in der Schaltung und ist damit auf sehr große Schaltungen anwendbar. Im zweiten Teil wird erstmals ein solches Verfahren f{\"u}r sequentielle Schaltkreise beschrieben. Dieses Verfahren baut im wesentlichen auf das erste auf. Der dritte Teil beschreibt eine Entwurfsmethode, die keine Informationen {\"u}ber die interne Struktur der Schaltung oder {\"u}ber das zugrundeliegende Fehlermodell ben{\"o}tigt. Der Entwurf basiert alleine auf einem vorgegebenen Satz von Testvektoren und die dazugeh{\"o}renden Testantworten der fehlerfreien Schaltung. Ein nach diesem Verfahren erzeugter Kompaktor maskiert keinen der Fehler, die durch das Testen mit den vorgegebenen Vektoren an den Ausg{\"a}ngen der Schaltung beobachtbar sind.}, language = {en} }