@article{WeidleWiesenbergElSharkawyetal.2022, author = {Weidle, Christian and Wiesenberg, Lars and El-Sharkawy, Amr and Kr{\"u}ger, Frank and Scharf, Andreas and Agard, Philippe and Meier, Thomas}, title = {A 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia}, series = {Geophysical journal international}, volume = {231}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac223}, pages = {817 -- 834}, year = {2022}, abstract = {The Semail Ophiolite in eastern Arabia is the largest and best-exposed slice of oceanic lithosphere on land. Detailed knowledge of the tectonic evolution of the shallow crust, in particular during and after ophiolite obduction in Late Cretaceous times is contrasted by few constraints on physical and compositional properties of the middle and lower continental crust below the obducted units. The role of inherited, pre-obduction crustal architecture remains therefore unaccounted for in our understanding of crustal evolution and the present-day geology. Based on seismological data acquired during a 27-month campaign in northern Oman, Ambient Seismic Noise Tomography and Receiver Function analysis provide for the first time a 3-D radially anisotropic shear wave velocity (V-S) model and a consistent Moho map below the iconic Semail Ophiolite. The model highlights deep crustal boundaries that segment the eastern Arabian basement in two distinct units. The previously undescribed Western Jabal Akhdar Zone separates Arabian crust with typical continental properties and a thickness of similar to 40-45 km in the northwest from a compositionally different terrane in the southeast that is interpreted as a terrane accreted during the Pan-African orogeny in Neoproterozoic times. East of the Ibra Zone, another deep crustal boundary, crustal thickness decreases to 30-35 km and very high lower crustal V-S suggest large-scale mafic intrusions into, and possible underplating of the Arabian continental crust that occurred most likely during Permian breakup of Pangea. Mafic reworking is sharply bounded by the (upper crustal) Semail Gap Fault Zone, northwest of which no such high velocities are found in the crust. Topography of the Oman Mountains is supported by a mild crustal root and Moho depth below the highest topography, the Jabal Akhdar Dome, is similar to 42 km. Radial anisotropy is robustly resolved in the upper crust and aids in discriminating dipping allochthonous units from autochthonous sedimentary rocks that are indistinguishable by isotropic V-S alone. Lateral thickness variations of the ophiolite highlight the Haylayn Ophiolite Massif on the northern flank of Jabal Akhdar Dome and the Hawasina Window as the deepest reaching unit. Ophiolite thickness is similar to 10 km in the southern and northern massifs, and <= 5 km elsewhere.}, language = {en} } @article{CristianoMeierKruegeretal.2016, author = {Cristiano, L. and Meier, T. and Kr{\"u}ger, F. and Keers, H. and Weidle, C.}, title = {Teleseismic P-wave polarization analysis at the Grafenberg array}, series = {Geophysical journal international}, volume = {207}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw339}, pages = {1456 -- 1471}, year = {2016}, abstract = {P-wave polarization at the Grafenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180A degrees A and 360A degrees. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180A degrees A periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20A degrees E with an uncertainty of about 8A degrees A and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360A degrees A periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.}, language = {en} }