@phdthesis{Kaempf2015, author = {K{\"a}mpf, Lucas}, title = {Extreme events in geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85961}, school = {Universit{\"a}t Potsdam}, pages = {xii, 94}, year = {2015}, abstract = {A main limitation in the field of flood hydrology is the short time period covered by instrumental flood time series, rarely exceeding more than 50 to 100 years. However, climate variability acts on short to millennial time scales and identifying causal linkages to extreme hydrological events requires longer datasets. To extend instrumental flood time series back in time, natural geoarchives are increasingly explored as flood recorders. Therefore, annually laminated (varved) lake sediments seem to be the most suitable archives since (i) lake basins act as natural sediment traps in the landscape continuously recording land surface processes including floods and (ii) individual flood events are preserved as detrital layers intercalated in the varved sediment sequence and can be dated with seasonal precision by varve counting. The main goal of this thesis is to improve the understanding about hydrological and sedimentological processes leading to the formation of detrital flood layers and therewith to contribute to an improved interpretation of lake sediments as natural flood archives. This goal was achieved in two ways: first, by comparing detrital layers in sediments of two dissimilar peri-Alpine lakes, Lago Maggiore in Northern Italy and Mondsee in Upper Austria, with local instrumental flood data and, second, by tracking detrital layer formation during floods by a combined hydro-sedimentary monitoring network at Lake Mondsee spanning from the rain fall to the deposition of detrital sediment at the lake floor. Successions of sub-millimetre to 17 mm thick detrital layers were detected in sub-recent lake sediments of the Pallanza Basin in the western part of Lago Maggiore (23 detrital layers) and Lake Mondsee (23 detrital layers) by combining microfacies and high-resolution micro X-ray fluorescence scanning techniques (ยต-XRF). The detrital layer records were dated by detailed intra-basin correlation to a previously dated core sequence in Lago Maggiore and varve counting in Mondsee. The intra-basin correlation of detrital layers between five sediment cores in Lago Maggiore and 13 sediment cores in Mondsee allowed distinguishing river runoff events from local erosion. Moreover, characteristic spatial distribution patterns of detrital flood layers revealed different depositional processes in the two dissimilar lakes, underflows in Lago Maggiore as well as under- and interflows in Mondsee. Comparisons with runoff data of the main tributary streams, the Toce River at Lago Maggiore and the Griesler Ache at Mondsee, revealed empirical runoff thresholds above which the deposition of a detrital layer becomes likely. Whereas this threshold is the same for the whole Pallanza Basin in Lago Maggiore (600 m3s-1 daily runoff), it varies within Lake Mondsee. At proximal locations close to the river inflow detrital layer deposition requires floods exceeding a daily runoff of 40 m3s-1, whereas at a location 2 km more distal an hourly runoff of 80 m3s-1 and at least 2 days with runoff above 40 m3s-1 are necessary. A relation between the thickness of individual deposits and runoff amplitude of the triggering events is apparent for both lakes but is obviously further influenced by variable influx and lake internal distribution of detrital sediment. To investigate processes of flood layer formation in lake sediments, hydro-sedimentary dynamics in Lake Mondsee and its main tributary stream, Griesler Ache, were monitored from January 2011 to December 2013. Precipitation, discharge and turbidity were recorded continuously at the rivers outlet to the lake and compared to sediment fluxes trapped close to the lake bottom on a basis of three to twelve days and on a monthly basis in three different water depths at two locations in the lake basin, in a distance of 0.9 (proximal) and 2.8 km (distal) to the Griesler Ache inflow. Within the three-year observation period, 26 river floods of different amplitude (10-110 m3s-1) were recorded resulting in variable sediment fluxes to the lake (4-760 g m-2d-1). Vertical and lateral variations in flood-related sedimentation during the largest floods indicate that interflows are the main processes of lake internal sediment transport in Lake Mondsee. The comparison of hydrological and sedimentological data revealed (i) a rapid sedimentation within three days after the peak runoff in the proximal and within six to ten days in the distal lake basin, (ii) empirical runoff thresholds for triggering sediment flux at the lake floor increasing from the proximal (20 m3s-1) to the distal lake basin (30 m3s-1) and (iii) factors controlling the amount of detrital sediment deposition at a certain location in the lake basin. The total influx of detrital sediment is mainly driven by runoff amplitude, catchment sediment availability and episodic sediment input by local sediment sources. A further role plays the lake internal sediment distribution which is not the same for each event but is favoured by flood duration and the existence of a thermocline and, therewith, the season in which a flood occurred. In summary, the studies reveal a high sensitivity of lake sediments to flood events of different intensity. Certain runoff amplitudes are required to supply enough detrital material to form a visible detrital layer at the lake floor. Reasonable are positive feedback mechanisms between rainfall, runoff, erosion, fluvial sediment transport capacity and lake internal sediment distribution. Therefore, runoff thresholds for detrital layer formation are site-specific due to different lake-catchment characteristics. However, the studies also reveal that flood amplitude is not the only control for the amount of deposited sediment at a certain location in the lake basin even for the strongest flood events. The sediment deposition is rather influenced by a complex interaction of catchment and in-lake processes. This means that the coring location within a lake basin strongly determines the significance of a flood layer record. Moreover, the results show that while lake sediments provide ideal archives for reconstructing flood frequencies, the reconstruction of flood amplitudes is a more complex issue and requires detailed knowledge about relevant catchment and in-lake sediment transport and depositional processes.}, language = {en} } @article{BrookeWhittakerArmitageetal.2018, author = {Brooke, Sam A. S. and Whittaker, Alexander C. and Armitage, John J. and Watkins, Stephen E. and D'Arcy, Mitchell}, title = {Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in Grain Size, Death Valley, California}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004622}, pages = {2039 -- 2067}, year = {2018}, abstract = {How information about sediment transport processes is transmitted to the sedimentary record remains a complex problem for the interpretation of fluvial stratigraphy. Alluvial fan deposits represent the condensed archive of sediment transport, which is at least partly controlled by tectonics and climate. For three coupled catchment-fan systems in northern Death Valley, California, we measure grain size across 12 well-preserved Holocene and late-Pleistocene surfaces, mapped in detail from field observations and remote sensing. Our results show that fan surfaces correlated to the late Pleistocene are, on average, 30-50\% coarser than active or Holocene fan surfaces. We adopt a self-similar form of grain size distribution based on the observed stability of the ratio between mean grain size and standard deviation downstream. Using statistical analysis, we show that fan surface grain size distributions are self-similar. We derive a relative mobility function using our self-similar grain size distributions, which describes the relative probability of a given grain size being transported. We show that the largest mobile grain sizes are between 20 and 35mm, a value that varies over time and is clearly lower in the Holocene than in the Pleistocene; a change we suggest is due to a drier climate in the Holocene. These results support recent findings that alluvial fan sedimentology can record past environmental change and that these landscapes are potentially sensitive to climatic change over a glacial-interglacial cycle. We demonstrate that the self-similarity methodology offers a means to explore changes in relative mobility of grain sizes from preserved fluvial deposits. Plain Language Summary A key challenge in Earth Science is understanding how landscapes respond to climate. It may be possible to observe measurable differences in certain landscapes settings such as alluvial fans in desert regions. Alluvial fans are believed to be effective recorders of climate, representing a cumulative store of material transported downstream by rainfall-sensitive river systems. In northern Death Valley, California, we measure at high resolution grain size on three alluvial fans with surfaces that date from the Holocene and the arid climate of today to the 20-40\% wetter late-Pleistocene epoch. We find that older late-Pleistocene surfaces are coarser on average than surfaces deposited during the modern and Holocene dry period, suggesting a changing sediment transport regime potentially in response to precipitation. We also show that measured grain size distributions within and between surfaces can be successfully normalized based on the decay in mean grain size and variance downstream, exhibiting a self-similar pattern. Finally, we employ a grain size relative mobility model using our field data to establish which grain sizes are likely to be in transport or locked in the substrate. This model predicts that during the wetter late-Pleistocene mobile grain sizes are up to 40\% larger than during the Holocene.}, language = {en} }