@phdthesis{Nardini2020, author = {Nardini, Livia}, title = {Influence of heterogeneities on the initiation of shear zones in the ductile regime}, doi = {10.25932/publishup-44616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446165}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 121}, year = {2020}, abstract = {The current thesis contains the results from two experimental and one modelling study focused on the topic of ductile strain localization in the presence of material heterogeneities. Localization of strain in the high temperature regime is a well known feature of rock deformation occurring in nature at different scales and in a variety of lithologies. Large scale shear zones at the roots of major crustal fault zones are considered responsible for the activity of plate tectonics on our planet. A large number of mechanisms are suggested to be associated with strain softening and nucleation of localization. Among these, the presence of material heterogeneities within homogeneous host rocks is frequently observed in field examples to trigger shear zone development. Despite a number of studies conducted on the topic, the mechanisms controlling initiation and evolution of localization are not fully understood yet. We investigated, experimentally and by means of numerical modelling, phenomenological and microphysical aspects of high temperature strain localization in a homogeneous body containing single and paired inclusions of weaker material. A monomineralic carbonate system composed of Carrara marble (homogeneous, strong matrix) and Solnhofen limestone (weak planar inclusions) is selected for our studies based on its versatility as an experimental material and on the frequent occurrence of carbonate rocks at the core of natural shear zones. To explore the influence of different loading conditions on heterogeneity-induced high temperature shear zones we conducted torsion experiments under constant twist (deformation) rate and constant torque (stress) conditions in a Paterson-type deformation apparatus on hollow cylinders of marble containing single planar inclusions of limestone. At the imposed experimental conditions (900 ◦C temperature and 400 MPa confining pressure) both materials deform plastically and the marble is ≈ 9 times stronger than the limestone. The viscosity contrast between the two materials induces a perturbation of the stress field within the marble matrix at the tip of the planar inclusion. Early on along the deformation path (at bulk shear strains ≈ 0.3), heterogeneous distribution of strain can be observed under both loading conditions and a small area of incipient strain localization is formed at the tip of the weak limestone inclusion. Strongly deformed grains, incipient dynamic recrystallization and a weak crystallographic preferred orientation characterize the marble within an area a few mm in front of the inclusion. As the bulk strain is increased (up to γ ≈ 1), the area of microstructural modification is expanded along the inclusion plane, the texture strengthens and grain size refinement by dynamic recrystallization becomes pervasive. Locally, evidences for coexisting brittle deformation are also observed regardless of the imposed loading conditions. A shear zone is effectively formed within the deforming Carrara marble, its geometry controlled by the plane containing the thin plate of limestone. Thorough microstructural and textural analysis, however, do not reveal substantial differences in the mechanisms or magnitude of strain localization at the different loading conditions. We conclude that, in the presence of material heterogeneities capable of inducing strain softening, the imposed loading conditions do not affect ductile localization in its nucleating and transient stages. As the ultimate goal of experimental rock deformation is the extrapolation of results to geologically relevant time and space scales, we developed 2D numerical models reproducing (and benchmarked to) our experimental results. Our cm-scaled models have been implemented with a first-order strain-dependent softening law to reproduce the effect of rheological weakening in the deforming material. We successfully reproduced the local stress concentration at the inclusion tips and the strain localization initiated in the marble matrix. The heterogeneous distribution of strain and its evolution with imposed bulk deformation (i.e. the shape and extent of the nucleating shear zone) are observed to depend on the degree of softening imposed to the deforming matrix. When a second (artificial) softening step is introduced at elevated bulk strains in the model, the formation of a secondary high strain layer is observed at the core of the initial shear zone, analogous to the development of ultramylonite bands in high strain natural shear zones. Our results do not only reproduce the nucleation and transient evolution of a heterogeneity-induced high temperature shear zone with high accuracy, but also confirm the importance of introducing reliable softening laws capable of mimicking strain weakening to numerical models of crustal scale ductile processes. Material heterogeneities inducing strain localization in the field are often consisting of brittle precursors (joints and fractures). More generally, the interaction of brittle and ductile deformation mechanisms and its effect on the localization of strain have been a key topic in the structural geology community for a long time. The positive feedback between (micro)fracturing and ductile strain localization is a well recognized effect in a number of field examples. We experimentally investigated the influence of brittle deformation on the initiation and evolution of high temperature shear zones in a strong matrix containing pairs of weak material heterogeneities. Our Carrara marble-Solnhofen limestone inclusions system was tested in triaxial compression under constant strain rate and high temperature (900 ◦C) conditions in a Paterson deformation apparatus. The inclusion pairs were arranged in non-overlapping step-over geometries of either compressional or extensional nature. Experimental runs were conducted at different confining pressures (30, 50, 100 and 300 MPa) to induce various amounts of brittle deformation within the marble matrix. At low confinement (30 and 50 MPa) abundant brittle deformation is observed in all configurations, but the spatial distribution of cracks is dependent on the kinematics of the step-over region: concentrated along the shearing plane between the inclusions in the extensional samples, or broadly distributed around the inclusions but outside the step-over region in the compressional configuration. Accordingly, brittle-assisted ductile processes tend to localize deformation along the inclusions plane in the extensional geometry or to distribute widely across large areas of the matrix in the compressional step-over. At pressures of 100 and 300 MPa fracturing is mostly suppressed in both configurations and strain is accommodated almost entirely by viscous creep. In extensional samples this leads to progressive de-localization with increasing confinement. Our results show that, while ductile localization of strain is indeed more efficient where assisted by brittle processes, these latter are only effective if themselves heterogeneously distributed, ultimately a function of the local stress perturbations.}, language = {en} }