@article{CastinoBookhagenStrecker2017, author = {Castino, Fabiana and Bookhagen, Bodo and Strecker, Manfred}, title = {Oscillations and trends of river discharge in the southern Central Andes and linkages with climate variability}, series = {Journal of hydrology}, volume = {555}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2017.10.001}, pages = {108 -- 124}, year = {2017}, abstract = {This study analyzes the discharge variability of small to medium drainage basins (10(2)-10(4) km(2)) in the southern Central Andes of NW Argentina. The Hilbert-Huang Transform (HHT) was applied to evaluate non-stationary oscillatory modes of variability and trends, based on four time series of monthly normalized discharge anomaly between 1940 and 2015. Statistically significant trends reveal increasing discharge during the past decades and document an intensification of the hydrological cycle during this period. An Ensemble Empirical Mode Decomposition (EEMD) analysis revealed that discharge variability in this region can be best described by five quasi-periodic statistically significant oscillatory modes, with mean periods varying from 1 to 20 y. Moreover, we show that discharge variability is most likely linked to the phases of the Pacific Decadal Oscillation (PDO) at multi-decadal timescales (similar to 20 y) and, to a lesser degree, to the Tropical South Atlantic SST anomaly (TSA) variability at shorter timescales (similar to 2-5 y). Previous studies highlighted a rapid increase in discharge in the southern Central Andes during the 1970s, inferred to have been associated with the global 1976-77 climate shift. Our results suggest that the rapid discharge increase in the NW Argentine Andes coincides with the periodic enhancement of discharge, which is mainly linked to a negative to positive transition of the PDO phase and TSA variability associated with a long-term increasing trend. We therefore suggest that variations in discharge in this region are largely driven by both natural variability and the effects of global climate change. We furthermore posit that the links between atmospheric and hydrologic processes result from a combination of forcings that operate on different spatiotemporal scales. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} }