@phdthesis{Stuff2021, author = {Stuff, Maria}, title = {Iron isotope fractionation in carbonatite melt systems}, doi = {10.25932/publishup-51992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519928}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 137}, year = {2021}, abstract = {Carbonatite magmatism is a highly efficient transport mechanism from Earth's mantle to the crust, thus providing insights into the chemistry and dynamics of the Earth's mantle. One evolving and promising tool for tracing magma interaction are stable iron isotopes, particularly because iron isotope fractionation is controlled by oxidation state and bonding environment. Meanwhile, a large data set on iron isotope fractionation in igneous rocks exists comprising bulk rock compositions and fractionation between mineral groups. Iron isotope data from natural carbonatite rocks are extremely light and of remarkably high variability. This resembles iron isotope data from mantle xenoliths, which are characterized by a variability in δ56Fe spanning three times the range found in basalts, and by the extremely light values of some whole rock samples, reaching δ56Fe as low as -0.69 per mille in a spinel lherzolite. Cause to this large range of variations may be metasomatic processes, involving metasomatic agents like volatile bearing high-alkaline silicate melts or carbonate melts. The expected effects of metasomatism on iron isotope fractionation vary with parameters like melt/rock-ratio, reaction time, and the nature of metasomatic agents and mineral reactions involved. An alternative or additional way to enrich light isotopes in the mantle could be multiple phases of melt extraction. To interpret the existing data sets more knowledge on iron isotope fractionation factors is needed. To investigate the behavior of iron isotopes in the carbonatite systems, kinetic and equilibration experiments in natro-carbonatite systems between immiscible silicate and carbonate melts were performed in an internally heated gas pressure vessel at intrinsic redox conditions at temperatures between 900 and 1200 °C and pressures of 0.5 and 0.7 GPa. The iron isotope compositions of coexisting silicate melt and carbonate melt were analyzed by solution MC-ICP-MS. The kinetic experiments employing a Fe-58 spiked starting material show that isotopic equilibrium is obtained after 48 hours. The experimental studies of equilibrium iron isotope fractionation between immiscible silicate and carbonate melts have shown that light isotopes are enriched in the carbonatite melt. The highest Δ56Fesil.m.-carb.melt (mean) of 0.13 per mille was determined in a system with a strongly peralkaline silicate melt composition (ASI ≥ 0.21, Na/Al ≤ 2.7). In three systems with extremely peralkaline silicate melt compositions (ASI between 0.11 and 0.14) iron isotope fractionation could analytically not be resolved. The lowest Δ56Fesil.m.-carb.melt (mean) of 0.02 per mille was determined in a system with an extremely peralkaline silicate melt composition (ASI ≤ 0.11 , Na/Al ≥ 6.1). The observed iron isotope fractionation is most likely governed by the redox conditions of the system. Yet, in the systems, where no fractionation occurred, structural changes induced by compositional changes possibly overrule the influence of redox conditions. This interpretation implicates, that the iron isotope system holds the potential to be useful not only for exploring redox conditions in magmatic systems, but also for discovering structural changes in a melt. In situ iron isotope analyses by femtosecond laser ablation coupled to MC-ICP-MS on magnetite and olivine grains were performed to reveal variations in iron isotope composition on the micro scale. The investigated sample is a melilitite bomb from the Salt Lake Crater group at Honolulu (Oahu, Hawaii), showing strong evidence for interaction with a carbonatite melt. While magnetite grains are rather homogeneous in their iron isotope compositions, olivine grains span a far larger range in iron isotope ratios. The variability of δ56Fe in magnetite is limited from - 0.17 per mille (± 0.11 per mille, 2SE) to +0.08 per mille (± 0.09 per mille, 2SE). δ56Fe in olivine range from -0.66 per mille (± 0.11 per mille, 2SE) to +0.10 per mille (± 0.13 per mille, 2SE). Olivine and magnetite grains hold different informations regarding kinetic and equilibrium fractionation due to their different Fe diffusion coefficients. The observations made in the experiments and in the in situ iron isotope analyses suggest that the extremely light iron isotope signatures found in carbonatites are generated by several steps of isotope fractionation during carbonatite genesis. These may involve equilibrium and kinetic fractionation. Since iron isotopic signatures in natural systems are generated by a combination of multiple factors (pressure, temperature, redox conditions, phase composition and structure, time scale), multi tracer approaches are needed to explain signatures found in natural rocks.}, language = {en} } @article{SteinhoefelBreuervonBlanckenburgetal.2011, author = {Steinhoefel, Grit and Breuer, J{\"o}rn and von Blanckenburg, Friedhelm and Horn, Ingo and Kaczorek, Danuta and Sommer, Michael}, title = {Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {286}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2011.05.013}, pages = {280 -- 289}, year = {2011}, abstract = {This study presents the first Si isotope data of the principle Si pools in soils determined by a UV femtosecond laser ablation system coupled to a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). This method reveals accurate and precise Si isotope data on bulk materials, and at high spatial resolution, on the mineral scale. The following Si pools have been investigated: a) the Si source to soils on all major silicate minerals on thin sections from bedrock fragments in the soil profiles; b) bulk soils (particle size <2 mm) after fusion to glass beads with an iridium-strip heater or pressed into powder pellets: c) separated clay fractions as pressed powder pellets and e) separated phytoliths as pressed powder pellets. Multiple analyses of three rock standards, BHVO-2, AGV-1 and RGM-1 as fused glass beads and as pressed powder pellets, reveal delta(30)Si values within the expected range of igneous rocks. The MPI-DING reference glass KL2-G exhibits the same Si isotope composition after remelting by an iridium-strip heater showing that this technique does not alter the isotope composition of the glass. We used this approach to investigated two immature Cambisols developed on sandstone and paragneiss in the Black Forest (Germany), respectively. Bulk soils show a largely uniform Si isotope signature for different horizons and locations, which is close to those of primary quartz and feldspar with delta(30)Si values around -0.4 parts per thousand. Soil clay formation is associated with limited Si mobility, which preserves initial Si isotope signatures of parental minerals. An exception is the organic horizon of the paragneiss catchment where intense weathering leads to a high mobility of Si and significant negative isotope signatures as low as to -1.00 parts per thousand in bulk soils. Biogenic opal in the form of phytoliths, exhibits negative Si isotope signatures of about -0.4 parts per thousand. These results demonstrate that UV femtosecond laser ablation MC-ICP-MS provides a tool to characterize the Si isotope signature of the principle Si pools left behind after weathering and Si transport have altered soils. These results can now serve as a fingerprint of the residual solids that can be used to explain the isotope composition of dissolved Si in soil solutions and river water, which is mostly enriched in the heavy isotopes.}, language = {en} }