@phdthesis{GomezZapata2023, author = {G{\´o}mez Zapata, Juan Camilo}, title = {Towards unifying approaches in exposure modelling for scenario-based multi-hazard risk assessments}, doi = {10.25932/publishup-58614}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586140}, school = {Universit{\"a}t Potsdam}, pages = {iii, xiii, 155}, year = {2023}, abstract = {This cumulative thesis presents a stepwise investigation of the exposure modelling process for risk assessment due to natural hazards while highlighting its, to date, not much-discussed importance and associated uncertainties. Although "exposure" refers to a very broad concept of everything (and everyone) that is susceptible to damage, in this thesis it is narrowed down to the modelling of large-area residential building stocks. Classical building exposure models for risk applications have been constructed fully relying on unverified expert elicitation over data sources (e.g., outdated census datasets), and hence have been implicitly assumed to be static in time and in space. Moreover, their spatial representation has also typically been simplified by geographically aggregating the inferred composition onto coarse administrative units whose boundaries do not always capture the spatial variability of the hazard intensities required for accurate risk assessments. These two shortcomings and the related epistemic uncertainties embedded within exposure models are tackled in the first three chapters of the thesis. The exposure composition of large-area residential building stocks is studied on the scope of scenario-based earthquake loss models. Then, the proposal of optimal spatial aggregation areas of exposure models for various hazard-related vulnerabilities is presented, focusing on ground-shaking and tsunami risks. Subsequently, once the experience is gained in the study of the composition and spatial aggregation of exposure for various hazards, this thesis moves towards a multi-hazard context while addressing cumulative damage and losses due to consecutive hazard scenarios. This is achieved by proposing a novel method to account for the pre-existing damage descriptions on building portfolios as a key input to account for scenario-based multi-risk assessment. Finally, this thesis shows how the integration of the aforementioned elements can be used in risk communication practices. This is done through a modular architecture based on the exploration of quantitative risk scenarios that are contrasted with social risk perceptions of the directly exposed communities to natural hazards. In Chapter 1, a Bayesian approach is proposed to update the prior assumptions on such composition (i.e., proportions per building typology). This is achieved by integrating high-quality real observations and then capturing the intrinsic probabilistic nature of the exposure model. Such observations are accounted as real evidence from both: field inspections (Chapter 2) and freely available data sources to update existing (but outdated) exposure models (Chapter 3). In these two chapters, earthquake scenarios with parametrised ground motion fields were transversally used to investigate the role of such epistemic uncertainties related to the exposure composition through sensitivity analyses. Parametrised scenarios of seismic ground shaking were the hazard input utilised to study the physical vulnerability of building portfolios. The second issue that was investigated, which refers to the spatial aggregation of building exposure models, was investigated within two decoupled vulnerability contexts: due to seismic ground shaking through the integration of remote sensing techniques (Chapter 3); and within a multi-hazard context by integrating the occurrence of associated tsunamis (Chapter 4). Therein, a careful selection of the spatial aggregation entities while pursuing computational efficiency and accuracy in the risk estimates due to such independent hazard scenarios (i.e., earthquake and tsunami) are discussed. Therefore, in this thesis, the physical vulnerability of large-area building portfolios due to tsunamis is considered through two main frames: considering and disregarding the interaction at the vulnerability level, through consecutive and decoupled hazard scenarios respectively, which were then contrasted. Contrary to Chapter 4, where no cumulative damages are addressed, in Chapter 5, data and approaches, which were already generated in former sections, are integrated with a novel modular method to ultimately study the likely interactions at the vulnerability level on building portfolios. This is tested by evaluating cumulative damages and losses after earthquakes with increasing magnitude followed by their respective tsunamis. Such a novel method is grounded on the possibility of re-using existing fragility models within a probabilistic framework. The same approach is followed in Chapter 6 to forecast the likely cumulative damages to be experienced by a building stock located in a volcanic multi-hazard setting (ash-fall and lahars). In that section, special focus was made on the manner the forecasted loss metrics are communicated to locally exposed communities. Co-existing quantitative scientific approaches (i.e., comprehensive exposure models; explorative risk scenarios involving single and multiple hazards) and semi-qualitative social risk perception (i.e., level of understanding that the exposed communities have about their own risk) were jointly considered. Such an integration ultimately allowed this thesis to also contribute to enhancing preparedness, science divulgation at the local level as well as technology transfer initiatives. Finally, a synthesis of this thesis along with some perspectives for improvement and future work are presented.}, language = {en} }