@article{DietrichFahleSeyfarth2016, author = {Dietrich, Ottfried and Fahle, Marcus and Seyfarth, Manfred}, title = {Behavior of water balance components at sites with shallow groundwater tables: Possibilities and limitations of their simulation using different ways to control weighable groundwater lysimeters}, series = {Agricultural water management : an international journal}, volume = {163}, journal = {Agricultural water management : an international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-3774}, doi = {10.1016/j.agwat.2015.09.005}, pages = {75 -- 89}, year = {2016}, abstract = {The water cycle of sites with shallow groundwater tables is characterized by complex interactions of hydrological and ecological processes. The water balance components, which are subject to diurnal fluctuations, are best measured with groundwater lysimeters. However, the lower boundary condition of such lysimeters affects most of the hydrological variables, particularly when considering short time scales, and has to be defined in such a way as to facilitate realistic simulations. In this paper, different means of controlling the lower boundary condition of groundwater lysimeters were compared with respect to their ability to simulate the behavior of the water balance components properly. Measurements of rain-free periods from a lysimeter station installed in the Spreewald wetland in north-east Germany were evaluated. The most common groundwater lysimeter type is controlled using a Mariotte bottle and sets the groundwater level in the soil monolith to a constant level, which here caused an alteration of the inflow to the lysimeter, with respect to both its value and diurnal behavior. Still, daily evapotranspiration values were realistic and this simple and robust approach may be used for time intervals not shorter than one day. High-resolution measurements can be gained from lysimeters that automatically adjust the groundwater level by a system of pumps and valves on an hourly basis. Still, reliable results were only obtained when the conditions in the lysimeter and the surrounding field, where the target groundwater level was measured, were in accordance. Otherwise (e.g., when the groundwater level differed) an unrealistic inflow behavior evolved. Reasonable results, even for slightly diverging conditions, were gained with a new approach that defined the lower boundary conditions by controlling the inflows and outflows of the lysimeter. This approach further enabled the groundwater level itself to be the study subject, thereby enlarging the field of possible applications of groundwater lysimeters. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchwabGarcinSachseetal.2015, author = {Schwab, Valerie F. and Garcin, Yannick and Sachse, Dirk and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Gleixner, Gerd}, title = {Effect of aridity on delta C-13 and delta D values of C-3 plant- and C-4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa)}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {78}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2014.09.007}, pages = {99 -- 109}, year = {2015}, abstract = {The observation that the hydrogen isotope composition (delta D) of leaf wax lipids is determined mainly by precipitation delta D values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the delta D values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (delta C-13) of n-alkanes in common plants along a latitudinal gradient in C-3/C-4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C-29 and n-C-31 in the same soil, derived mainly from C-4 graminoids (e.g. grass) and C-3 plants (e.g. trees and shrubs), respectively. We found that the delta D values of soil n-C-27, n-C29 and n-C-31, and PTMEs correlated significantly with surface water delta D values, supporting previous observations that leaf wax lipid delta D values are an effective proxy for reconstructing precipitation delta D values even if plant types changed significantly. The apparent fractionation (epsilon(app)) between leaf wax lipid and precipitation delta D values remained relatively constant for C-3-derived long chain n-alkanes, whereas eapp of C-4-derived PTMEs decreased by 20 parts per thousand along the latitudinal gradient encompassing a relative humidity range from 80\% to 45\%. Our results indicate that PTME delta D values derived from C-4 graminoids may be a more reliable paleo-ecohydrological proxy for ecosystem evapotranspiration within tropical and sub-tropical Africa than n-alkane delta D values, the latter being a better proxy for surface water delta D values. We suggest that vegetation changes associated with different plant water sources and/or difference in timing of leaf wax synthesis between C-3 trees of the transitional class and C-3 shrubs of the savanna resulted in a D depletion in soil long chain n-alkanes, thereby counteracting the effect of evapotranspiration D enrichment along the gradient. In contrast, evaporative D enrichment of leaf and soil water was significant enough to be recorded in the delta D values of PTMEs derived from C-4 graminoids, likely because PTMEs recorded the hydrogen isotopic composition of the same vegetation type.}, language = {en} }