@masterthesis{Lehmann2017, type = {Bachelor Thesis}, author = {Lehmann, Lukas}, title = {Performance Test von Phasenpickern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401993}, school = {Universit{\"a}t Potsdam}, pages = {I, 40, XXXIX}, year = {2017}, abstract = {Die genauen Einsatzzeiten seismischer P-Phasen von Erdbeben werden in SeisComP3 und anderen Auswerteprogrammen standardm{\"a}ßig und in Echtzeit automatisch bestimmt. S-Phasen stellen dagegen eine weit gr{\"o}ßere Herausforderung dar. Nur mit genauen Picks der P- bzw. S-Phasen k{\"o}nnen die Erdbebenlokationen korrekt und stabil bestimmt werden. Darum besteht erhebliches Interesse, diese mit hoher Genauigkeit zu bestimmen. Das Ziel der vorliegenden Bachelorarbeit war es, vier verschiedene, bereits vorhandene S-Phasenpicker auf ausgew{\"a}hlte Parameter optimal zu konfigurieren, auf Testdaten anzuwenden und deren Leistungsf{\"a}higkeit objektiv zu bewerten. Dazu wurden ein S-Picker (S-L2) aus dem OpenSource SeisComp3-Programmpaket, zwei S-Picker (S-AIC, S-AIC-V) als kommerzielles Modul der Firma gempa GmbH f{\"u}r SeisComP3 und ein S-Picker (Frequenzband) aus dem OpenSource PhasePaPy-Paket ausgew{\"a}hlt. Die Bewertung erfolgte durch Vergleich automatischer Picks mit manuell bestimmten Einsatzzeiten. Alle vier Picker wurden separat konfiguriert und auf drei verschiedene Datens{\"a}tze von Erdbeben in N-Chile und im Vogtland, Deutschland, angewandt. Dazu wurden regional bzw. lokal typische Erdbeben zuf{\"a}llig ausgew{\"a}hlt und die P- und S-Phasen manuell bestimmt. Mit den zu testenden S-Pickeralgorithmen wurden dieselben Daten durchsucht und die Picks automatisch bestimmt. Die Konfigurationen der Picker wurden gleichzeitig automatisch und objektiv durch iterative Anpassung optimiert. Ein neu erstelltes Bewertungssystem vergleicht die manuellen und die automatisch gefundenen S-Picks anhand von definierten Qualit{\"a}tsfaktoren. Die Qualit{\"a}tsfaktoren sind: der Mittelwert und die Standardabweichung der zeitlichen Differenzen zwischen den S-Picks, die Anzahl an {\"u}bereinstimmenden S-Picks, die Prozentangaben {\"u}ber m{\"o}gliche S-Picks und die ben{\"o}tigt Rechenzeit. Die objektive Bewertung erfolgte anhand eines Scores. Der Scorewert ergibt sich aus der gewichteten Summe folgender normierter Qualit{\"a}tsfaktoren: Standardabweichung (20\%), Mittelwert (20\%) und Prozentangabe {\"u}ber m{\"o}gliche S-Picks (60\%). Konfigurationen mit hohem Score werden bevorzugt. Die bevorzugten Konfigurationen der verschiedenen Picker wurden miteinander verglichen, um den am besten geeigneten S-Pickeralgorithmus zu bestimmen. Allgemein zeigt sich, dass der S-AIC Picker f{\"u}r jeden der drei Datens{\"a}tze die h{\"o}chsten Scores und damit die besten Ergebnisse liefert. Dabei wurde f{\"u}r jeden Datensatz ein andere Konfiguration der Parameter des S-AIC Pickers als die am besten geeignete bezeichnet. Daher ist f{\"u}r jede Erdbebenregion eine andere Konfigurationen erforderlich, um optimale Ergebnisse mit diesem S-Picker zu bekommen.}, language = {de} } @phdthesis{Wolf2017, author = {Wolf, Julia}, title = {Schadenserkennung in Beton durch {\"U}berwachung mit eingebetteten Ultraschallpr{\"u}fk{\"o}pfen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397363}, school = {Universit{\"a}t Potsdam}, pages = {ix, 142}, year = {2017}, abstract = {Die zerst{\"o}rungsfreien Pr{\"u}fungen von Bauwerken mit Hilfe von Ultraschallmessverfahren haben in den letzten Jahren an Bedeutung gewonnen. Durch Ultraschallmessungen k{\"o}nnen die Geometrien von Bauteilen bestimmt sowie von außen nicht sichtbare Fehler wie Delaminationen und Kiesnester erkannt werden. Mit neuartigen, in das Betonbauteil eingebetteten Ultraschallpr{\"u}fk{\"o}pfen sollen nun Bauwerke dauerhaft auf Ver{\"a}nderungen {\"u}berpr{\"u}ft werden. Dazu werden Ultraschallsignale direkt im Inneren eines Bauteils erzeugt, was die M{\"o}glichkeiten der herk{\"o}mmlichen Methoden der Bauwerks{\"u}berwachung wesentlich erweitert. Ein Ultraschallverfahren k{\"o}nnte mit eingebetteten Pr{\"u}fk{\"o}pfen ein Betonbauteil kontinuierlich integral {\"u}berwachen und damit auch stetig fortschreitende Gef{\"u}ge{\"a}nderungen, wie beispielsweise Mikrorisse, registrieren. Sicherheitsrelevante Bauteile, die nach dem Einbau f{\"u}r Messungen unzug{\"a}nglich oder mittels Ultraschall, beispielsweise durch zus{\"a}tzliche Beschichtungen der Oberfl{\"a}che, nicht pr{\"u}fbar sind, lassen sich mit eingebetteten Pr{\"u}fk{\"o}pfen {\"u}berwachen. An bereits vorhandenen Bauwerken k{\"o}nnen die Ultraschallpr{\"u}fk{\"o}pfe mithilfe von Bohrl{\"o}chern und speziellem Verpressm{\"o}rtel auch nachtr{\"a}glich in das Bauteil integriert werden. F{\"u}r Fertigbauteile bieten sich eingebettete Pr{\"u}fk{\"o}pfe zur Herstellungskontrolle sowie zur {\"U}berwachung der Baudurchf{\"u}hrung als Werkzeug der Qualit{\"a}tssicherung an. Auch die schnelle Schadensanalyse eines Bauwerks nach Naturkatastrophen, wie beispielsweise einem Erdbeben oder einer Flut, ist denkbar. Durch die gute Ankopplung erm{\"o}glichen diese neuartigen Pr{\"u}fk{\"o}pfe den Einsatz von empfindlichen Auswertungsmethoden, wie die Kreuzkorrelation, die Coda-Wellen-Interferometrie oder die Amplitudenauswertung, f{\"u}r die Signalanalyse. Bei regelm{\"a}ßigen Messungen k{\"o}nnen somit sich anbahnende Sch{\"a}den eines Bauwerks fr{\"u}hzeitig erkannt werden. Da die Sch{\"a}digung eines Bauwerks keine direkt messbare Gr{\"o}ße darstellt, erfordert eine eindeutige Schadenserkennung in der Regel die Messung mehrerer physikalischer Gr{\"o}ßen die geeignet verkn{\"u}pft werden. Physikalische Gr{\"o}ßen k{\"o}nnen sein: Ultraschalllaufzeit, Amplitude des Ultraschallsignals und Umgebungstemperatur. Dazu m{\"u}ssen Korrelationen zwischen dem Zustand des Bauwerks, den Umgebungsbedingungen und den Parametern des gemessenen Ultraschallsignals untersucht werden. In dieser Arbeit werden die neuartigen Pr{\"u}fk{\"o}pfe vorgestellt. Es wird beschrieben, dass sie sich, sowohl in bereits errichtete Betonbauwerke als auch in der Konstruktion befindliche, einbauen lassen. Experimentell wird gezeigt, dass die Pr{\"u}fk{\"o}pfe in mehreren Ebenen eingebettet sein k{\"o}nnen da ihre Abstrahlcharakteristik im Beton nahezu ungerichtet ist. Die Mittenfrequenz von rund 62 kHz erm{\"o}glicht Abst{\"a}nde, je nach Betonart und SRV, von mindestens 3 m zwischen Pr{\"u}fk{\"o}pfen die als Sender und Empf{\"a}nger arbeiten. Die Empfindlichkeit der eingebetteten Pr{\"u}fk{\"o}pfe gegen{\"u}ber Ver{\"a}nderungen im Beton wird an Hand von zwei Laborexperimenten gezeigt, einem Drei-Punkt-Biegeversuch und einem Versuch zur Erzeugung von Frost-Tau-Wechsel Sch{\"a}den. Die Ergebnisse werden mit anderen zerst{\"o}rungsfreien Pr{\"u}fverfahren verglichen. Es zeigt sich, dass die Pr{\"u}fk{\"o}pfe durch die Anwendung empfindlicher Auswertemethoden, auftretende Risse im Beton detektieren, bevor diese eine Gefahr f{\"u}r das Bauwerk darstellen. Abschließend werden Beispiele von Installation der neuartigen Ultraschallpr{\"u}fk{\"o}pfe in realen Bauteilen, zwei Br{\"u}cken und einem Fundament, gezeigt und basierend auf dort gewonnenen ersten Erfahrungen ein Konzept f{\"u}r die Umsetzung einer Langzeit{\"u}berwachung aufgestellt.}, language = {de} }