@article{MtilatilaBronstertBuergeretal.2020, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and B{\"u}rger, Gerd and Vormoor, Klaus Josef}, title = {Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970-2013)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {65}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {16}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1837384}, pages = {2750 -- 2764}, year = {2020}, abstract = {The study assesses the variability and trends of both meteorological and hydrological droughts from 1970 to 2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. Trends and slopes in droughts and drought drivers are estimated using Mann-Kendall test and Sen's slope, respectively. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions, since the 36-month SPEI can predict hydrological droughts 10 months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m a.s.l. The increase in drought is a concern as this will have serious impacts on water resources and hydropower supply in Malawi.}, language = {en} }