@phdthesis{Bastian2022, author = {Bastian, Philipp U.}, title = {Core-shell upconversion nanoparticles - investigation of dopant intermixing and surface modification}, doi = {10.25932/publishup-55160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-551607}, school = {Universit{\"a}t Potsdam}, pages = {XII, 108, xxiii}, year = {2022}, abstract = {Frequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process is very interesting in the biological/medical context. Biological samples (like organic tissue, blood, urine, and stool) absorb high-energy photons (UV and blue light) more strongly than low-energy photons (red and NIR light). Thanks to a naturally occurring optical window, NIR light can penetrate deeper than UV light into biological samples. Hence, UCNPs in bio-samples can be excited by NIR light. This possibility opens a pathway for in vitro as well as in vivo applications, like optical imaging by cell labeling or staining of specific organic tissue. Furthermore, early detection and diagnosis of diseases by predictive and diagnostic biomarkers can be realized with bio-recognition elements being labeled to the UCNPs. Additionally, "theranostic" becomes possible, in which the identification and the treatment of a disease are tackled simultaneously. For this to succeed, certain parameters for the UCNPs must be met: high upconversion efficiency, high photoluminescence quantum yield, dispersibility, and dispersion stability in aqueous media, as well as availability of functional groups to introduce fast and easy bio-recognition elements. The UCNPs used in this work were prepared with a solvothermal decomposition synthesis yielding in particles with NaYF4 or NaGdF4 as host lattice. They have been doped with the Ln(III) ions Yb3+ and Er3+, which is only one possible upconversion pair. Their upconversion efficiency and photoluminescence quantum yield were improved by adding a passivating shell to reduce surface quenching. However, the brightness of core-shell UCNPs stays behind the expectations compared to their bulk material (being at least μm-sized particles). The core-shell structures are not clearly separated from each other, which is a topic in literature. Instead, there is a transition layer between the core and the shell structure, which relates to the migration of the dopants within the host lattice during the synthesis. The ion migration has been examined by time-resolved laser spectroscopy and the interlanthanoid resonance energy transfer (LRET) in the two different host lattices from above. The results are presented in two publications, which dealt with core-shell-shell structured nanoparticles. The core is doped with the LRET-acceptor (either Nd3+ or Pr3+). The intermediate shell serves as an insulation shell of pure host lattice material, whose shell thickness has been varied within one set of samples having the same composition, so that the spatial separation of LRET-acceptor and -donor changes. The outer shell with the same host lattice is doped with the LRET-donor (Eu3+). The effect of the increasing insulation shell thickness is significant, although the LRET cannot be suppressed completely. Next to the Ln(III) migration within a host lattice, various phase transfer reactions were investigated in order to subsequently perform surface modifications for bioapplications. One result out of this research has been published using a promising ligand, that equips the UCNP with bio-modifiable groups and has good potential for bio-medical applications. This particular ligand mimics natural occurring mechanisms of mussel protein adhesion and of blood coagulation, which is why the UCNPs are encapsulated very effectively. At the same time, bio-functional groups are introduced. In a proof-of-concept, the encapsulated UCNP has been coupled successfully with a dye (which is representative for a biomarker) and the system's photoluminescence properties have been investigated.}, language = {en} } @phdthesis{Brandi2022, author = {Brandi, Francesco}, title = {Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts}, doi = {10.25932/publishup-53766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537660}, school = {Universit{\"a}t Potsdam}, pages = {xii, 201}, year = {2022}, abstract = {The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-\% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol\%, 62 mol\%, and 100 mol\% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual-column integrated process for isosorbide production from glucose (yield 83 mol\%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.}, language = {en} } @phdthesis{Brinkmann2022, author = {Brinkmann, Pia}, title = {Laserinduzierte Breakdownspektroskopie zur qualitativen und quantitativen Bestimmung von Elementgehalten in geologischen Proben mittels multivariater Analysemethoden am Beispiel von Kupfer und ausgew{\"a}hlten Seltenen Erden}, doi = {10.25932/publishup-57212}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572128}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2022}, abstract = {Ein schonender Umgang mit den Ressourcen und der Umwelt ist wesentlicher Bestandteil des modernen Bergbaus sowie der zuk{\"u}nftigen Versorgung unserer Gesellschaft mit essentiellen Rohstoffen. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung analytischer Strategien, die durch eine exakte und schnelle Vor-Ort-Analyse den technisch-praktischen Anforderungen des Bergbauprozesses gerecht werden und somit zu einer gezielten und nachhaltigen Nutzung von Rohstofflagerst{\"a}tten beitragen. Die Analysen basieren auf den spektroskopischen Daten, die mittels der laserinduzierten Breakdownspektroskopie (LIBS) erhalten und mittels multivariater Datenanalyse ausgewertet werden. Die LIB-Spektroskopie ist eine vielversprechende Technik f{\"u}r diese Aufgabe. Ihre Attraktivit{\"a}t machen insbesondere die M{\"o}glichkeiten aus, Feldproben vor Ort ohne Probennahme oder ‑vorbereitung messen zu k{\"o}nnen, aber auch die Detektierbarkeit s{\"a}mtlicher Elemente des Periodensystems und die Unabh{\"a}ngigkeit vom Aggregatzustand. In Kombination mit multivariater Datenanalyse kann eine schnelle Datenverarbeitung erfolgen, die Aussagen zur qualitativen Elementzusammensetzung der untersuchten Proben erlaubt. Mit dem Ziel die Verteilung der Elementgehalte in einer Lagerst{\"a}tte zu ermitteln, werden in dieser Arbeit Kalibrierungs- und Quantifizierungsstrategien evaluiert. F{\"u}r die Charakterisierung von Matrixeffekten und zur Klassifizierung von Mineralen werden explorative Datenanalysemethoden angewendet. Die spektroskopischen Untersuchungen erfolgen an B{\"o}den und Gesteinen sowie an Mineralen, die Kupfer oder Seltene Erdelemente beinhalten und aus verschiedenen Lagerst{\"a}tten bzw. von unterschiedlichen Agrarfl{\"a}chen stammen. F{\"u}r die Entwicklung einer Kalibrierungsstrategie wurden sowohl synthetische als auch Feldproben von zwei verschiedenen Agrarfl{\"a}chen mittels LIBS analysiert. Anhand der Beispielanalyten Calcium, Eisen und Magnesium erfolgte die auf uni- und multivariaten Methoden beruhende Evaluierung verschiedener Kalibrierungsmethoden. Grundlagen der Quantifizierungsstrategien sind die multivariaten Analysemethoden der partiellen Regression der kleinsten Quadrate (PLSR, von engl.: partial least squares regression) und der Intervall PLSR (iPLSR, von engl.: interval PLSR), die das gesamte detektierte Spektrum oder Teilspektren in der Analyse ber{\"u}cksichtigen. Der Untersuchung liegen synthetische sowie Feldproben von Kupfermineralen zugrunde als auch solche die Seltene Erdelemente beinhalten. Die Proben stammen aus verschiedenen Lagerst{\"a}tten und weisen unterschiedliche Begleitmatrices auf. Mittels der explorativen Datenanalyse erfolgte die Charakterisierung dieser Begleitmatrices. Die daf{\"u}r angewendete Hauptkomponentenanalyse gruppiert Daten anhand von Unterschieden und Regelm{\"a}ßigkeiten. Dies erlaubt Aussagen {\"u}ber Gemeinsamkeiten und Unterschiede der untersuchten Proben im Bezug auf ihre Herkunft, chemische Zusammensetzung oder lokal bedingte Auspr{\"a}gungen. Abschließend erfolgte die Klassifizierung kupferhaltiger Minerale auf Basis der nicht-negativen Tensorfaktorisierung. Diese Methode wurde mit dem Ziel verwendet, unbekannte Proben aufgrund ihrer Eigenschaften in Klassen einzuteilen. Die Verkn{\"u}pfung von LIBS und multivariater Datenanalyse bietet die M{\"o}glichkeit durch eine Analyse vor Ort auf eine Probennahme und die entsprechende Laboranalytik weitestgehend zu verzichten und kann somit zum Umweltschutz sowie einer Schonung der nat{\"u}rlichen Ressourcen bei der Prospektion und Exploration von neuen Erzg{\"a}ngen und Lagerst{\"a}tten beitragen. Die Verteilung von Elementgehalten der untersuchten Gebiete erm{\"o}glicht zudem einen gezielten Abbau und damit eine effiziente Nutzung der mineralischen Rohstoffe.}, language = {de} } @phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} } @phdthesis{Chea2022, author = {Chea, Sany}, title = {Glycomaterials: From synthesis of glycoconjugates to potential biomedical applications}, doi = {10.25932/publishup-57424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574240}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 217}, year = {2022}, abstract = {The importance of carbohydrate structures is enormous due to their ubiquitousness in our lives. The development of so-called glycomaterials is the result of this tremendous significance. These are not exclusively used for research into fundamental biological processes, but also, among other things, as inhibitors of pathogens or as drug delivery systems. This work describes the development of glycomaterials involving the synthesis of glycoderivatives, -monomers and -polymers. Glycosylamines were synthesized as precursors in a single synthesis step under microwave irradiation to significantly shorten the usual reaction time. Derivatization at the anomeric position was carried out according to the methods developed by Kochetkov and Likhorshetov, which do not require the introduction of protecting groups. Aminated saccharide structures formed the basis for the synthesis of glycomonomers in β-configuration by methacrylation. In order to obtain α-Man-based monomers for interactions with certain α-Man-binding lectins, a monomer synthesis by Staudinger ligation was developed in this work, which also does not require protective groups. Modification of the primary hydroxyl group of a saccharide was accomplished by enzyme-catalyzed synthesis. Ribose-containing cytidine was transesterified using the lipase Novozym 435 and microwave irradiation. The resulting monomer synthesis was optimized by varying the reaction partners. To create an amide bond instead of an ester bond, protected cytidine was modified by oxidation followed by amide coupling to form the monomer. This synthetic route was also used to isolate the monomer from its counterpart guanosine. After obtaining the nucleoside-based monomers, they were block copolymerized using the RAFT method. Pre-synthesized pHPMA served as macroCTA to yield cytidine- or guanosine-containing block copolymer. These isolated block copolymers were then investigated for their self-assembly behavior using UV-Vis, DLS and SEM to serve as a potential thermoresponsive drug delivery system.}, language = {en} } @phdthesis{Doering2022, author = {Doering, Ulrike}, title = {Preparation, characterization and modification of oil loaded protein microcapsules and composite protein-mineral microcapsules}, doi = {10.25932/publishup-55958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559589}, school = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2022}, abstract = {Diese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der {\"O}l-Wasser-Grenzfl{\"a}che. W{\"a}hrend ein System durch BSA-Molek{\"u}le stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgef{\"u}hrt und eine plausible Erkl{\"a}rung f{\"u}r den Mechanismus der Kapselbildung wurde vorgestellt. W{\"a}hrend der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmolek{\"u}le als Erstes an der O/W-Grenzfl{\"a}che, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbr{\"u}ckenbindungen zwischen den benachbarten Molek{\"u}len stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Molek{\"u}le {\"u}ber die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise f{\"u}r die durch Ultraschall induzierte Quervernetzung von BSA in den Schalen der proteinbasierten Mikrokapseln aufgezeigt. Deshalb wurde das Konzept, das vor vielen Jahren von Suslick und seinen Mitarbeitern vorgestellt wurde, zum ersten Mal durch experimentelle Nachweise best{\"a}tigt. Außerdem wurde ein konsistenter Mechanismus f{\"u}r die Bildung der intermolekularen Disulfidbindungen in der Kapselschale vorgestellt, der auf der Neuverteilung der Thiol- und Disulfidgruppen in BSA unter der Wirkung von hochenergetischem Ultraschall basiert. Auch die Bildung von kompositen Protein-Mineral-Mikrokapseln, die mit drei verschiedenen {\"O}len gef{\"u}llt wurden und deren Schalen aus Nanopartikeln bestehen, war erfolgreich. Die Beschaffenheit des {\"O}ls und die Art der Nanopartikel in der Schale hatten Einfluss auf die Gr{\"o}ße und Form der Mikrokapseln. Die Untersuchung der kompositen Kapseln zeigte, dass die BSA-Molek{\"u}le, die an der Oberfl{\"a}che der Nanopartikel in der Kapselschale adsorbiert sind, nicht durch intermolekulare Disulfidbindungen quervernetzt sind. Stattdessen findet die Bildung einer Pickering-Emulsion statt. Die Oberfl{\"a}chenmodifizierung der kompositen Mikrokapseln durch Vormodifizierung der Hauptbestandteile und auch durch Postmodifizierung der Oberfl{\"a}che der fertigen kompositen Mikrokapseln wurde erfolgreich demonstriert. Zus{\"a}tzlich wurden die mechanischen Eigenschaften beider Kapselarten verglichen. Dabei erwiesen sich die Protein-Mikrokapseln widerstandsf{\"a}higer gegen{\"u}ber elastischer Deformation.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Eric Wolfgang}, title = {Quantum vibrational dynamics in complex environments: from vibrational strong coupling in molecular cavity QED to phonon-induced adsorbate relaxation}, doi = {10.25932/publishup-56721}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567214}, school = {Universit{\"a}t Potsdam}, pages = {viii, 171}, year = {2022}, abstract = {Molecules are often naturally embedded in a complex environment. As a consequence, characteristic properties of a molecular subsystem can be substantially altered or new properties emerge due to interactions between molecular and environmental degrees of freedom. The present thesis is concerned with the numerical study of quantum dynamical and stationary properties of molecular vibrational systems embedded in selected complex environments. In the first part, we discuss "strong-coupling" model scenarios for molecular vibrations interacting with few quantized electromagnetic field modes of an optical Fabry-P{\´e}rot cavity. We thoroughly elaborate on properties of emerging "vibrational polariton" light-matter hybrid states and examine the relevance of the dipole self-energy. Further, we identify cavity-induced quantum effects and an emergent dynamical resonance in a cavity-altered thermal isomerization model, which lead to significant suppression of thermal reaction rates. Moreover, for a single rovibrating diatomic molecule in an optical cavity, we observe non-adiabatic signatures in dynamics due to "vibro-polaritonic conical intersections" and discuss spectroscopically accessible "rovibro-polaritonic" light-matter hybrid states. In the second part, we study a weakly coupled but numerically challenging quantum mechanical adsorbate-surface model system comprising a few thousand surface modes. We introduce an efficient construction scheme for a "hierarchical effective mode" approach to reduce the number of surface modes in a controlled manner. In combination with the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method, we examine the vibrational adsorbate relaxation dynamics from different excited adsorbate states by solving the full non-Markovian system-bath dynamics for the characteristic relaxation time scale. We examine half-lifetime scaling laws from vibrational populations and identify prominent non-Markovian signatures as deviations from Markovian reduced system density matrix theory in vibrational coherences, system-bath entanglement and energy transfer dynamics. In the final part of this thesis, we approach the dynamics and spectroscopy of vibronic model systems at finite temperature by formulating the ML-MCTDH method in the non-stochastic framework of thermofield dynamics. We apply our method to thermally-altered ultrafast internal conversion in the well-known vibronic coupling model of pyrazine. Numerically beneficial representations of multilayer wave functions ("ML-trees") are identified for different temperature regimes, which allow us to access thermal effects on both electronic and vibrational dynamics as well as spectroscopic properties for several pyrazine models.}, language = {en} } @phdthesis{Flatken2022, author = {Flatken, Marion A.}, title = {The early stages of halide perovskites thin film formation}, doi = {10.25932/publishup-55259}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552599}, school = {Universit{\"a}t Potsdam}, pages = {VI, 144}, year = {2022}, abstract = {As climate change worsens, there is a growing urgency to promote renewable energies and improve their accessibility to society. Here, solar energy harvesting is of particular importance. Currently, metal halide perovskite (MHP) solar cells are indispensable in future solar energy generation research. MHPs are crystalline semiconductors increasingly relevant as low-cost, high-performance materials for optoelectronics. Their processing from solution at low temperature enables easy fabrication of thin film elements, encompassing solar cells and light-emitting diodes or photodetectors. Understanding the coordination chemistry of MHPs in their precursor solution would allow control over the thin film crystallization, the material properties and the final device performance. In this work, we elaborate on the key parameters to manipulate the precursor solution with the long-term objective of enabling systematic process control. We focus on the nanostructural characterization of the initial arrangements of MHPs in the precursor solutions. Small-angle scattering is particularly well suited for measuring nanoparticles in solution. This technique proved to be valuable for the direct analyzes of perovskite precursor solutions in standard processing concentrations without causing radiation damage. We gain insights into the chemical nature of widely used precursor structures such as methylammonium lead iodide (MAPbI3), presenting first insights into the complex arrangements and interaction within this precursor state. Furthermore, we transfer the preceding results to other more complex perovskite precursors. The influence of compositional engineering is investigated using the addition of alkali cations as an example. As a result, we propose a detailed working mechanism on how the alkali cations suppress the formation of intermediate phases and improve the quality of the crystalline thin film. In addition, we investigate the crystallization process of a tin-based perovskite composition (FASnI3) under the influence of fluoride chemistry. We prove that the frequently used additive, tin fluoride (SnF2), selectively binds undesired oxidized tin (Sn(IV)) in the precursor solution. This prevents its incorporation into the actual crystal structure and thus reduces the defect density of the material. Furthermore, SnF2 leads to a more homogeneous crystal growth process, which results in improved crystal quality of the thin film material. In total, this study provides a detailed characterization of the complex system of perovskite precursor chemistry. We thereby cover relevant parameters for future MHP solar cell process control, such as (I) the environmental impact based on concentration and temperature (II) the addition of counter ions to reduce the diffuse layer surrounding the precursor nanostructures and (III) the targeted use of additives to eliminate unwanted components selectively and to ensure a more homogeneous crystal growth.}, language = {en} } @phdthesis{Freyse2022, author = {Freyse, Daniel}, title = {Thioacetal-Bausteine f{\"u}r Fluoreszenzfarbstoffe und molekulare St{\"a}be}, doi = {10.25932/publishup-54925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549252}, school = {Universit{\"a}t Potsdam}, pages = {292}, year = {2022}, abstract = {Im Rahmen dieser Dissertation wurde der Sauerstoff im Grundger{\"u}st der [1,3]-Dioxolo[4.5-f]benzodioxol-Fluoreszenzfarbstoffe (DBD-Fluoreszenzfarbstoffe) vollst{\"a}ndig mit Schwefel ausgetauscht und daraus eine neue Klasse von Fluoreszenzfarbstoffen entwickelt, die Benzo[1,2-d:4,5-d']bis([1,3]dithiol)-Fluorophore (S4-DBD-Fluorophore). Insgesamt neun der besonders interessanten, difunktionalisierten Vertreter konnten synthetisiert werden, die sich in ihren elektronenziehenden Gruppen und in ihrer Anordnung unterschieden. Durch den Austausch von Sauerstoff mit Schwefel kam es zu teilweise auff{\"a}lligen Ver{\"a}nderungen in den Fluoreszenzparametern, wie eine Abnahme der Fluoreszenzquantenausbeuten und -lebenszeiten aber auch eine deutliche Rotverschiebung in den Absorptions- und Emissionswellenl{\"a}ngen mit großen STOKES-Verschiebungen. Damit sind die S4-DBD-Fluorophore eine wertvolle Erg{\"a}nzung f{\"u}r die DBD-Farbstoffe. Die Ursachen f{\"u}r die Abnahme der Lebenszeiten und Quantenausbeuten konnte auf eine hohe Besetzung des Triplett-Zustandes zur{\"u}ckgef{\"u}hrt werden, welcher durch die verst{\"a}rkten Spin-Bahn-Kopplungen des Schwefels hervorgerufen wird. Zusammen mit dem Arbeitskreis physikalische Chemie der Universit{\"a}t Potsdam konnten auch die photophysikalischen Prozesse {\"u}ber die Transienten-Absorptionsspektroskopie (TAS) aufgekl{\"a}rt werden. Eine Strategie zur Funktionalisierung der S4-DBD-Farbstoffe am Thioacetalger{\"u}st konnte entwickelt werden. So gelang es Alkohol-, Propargyl-, Azid-, NHS-Ester-, Carbons{\"a}ure-, Maleimid- und Tosyl-Gruppen an S4-DBD-Dialdehyden anzubringen. Erweiternd wurden molekulare St{\"a}be auf Basis von Schwefel-Oligo-Spiro-Ketalen (SOSKs) untersucht, bei denen Sauerstoff durch Schwefel ersetzt wurde. Hier konnten die Synthesen der l{\"o}slichkeitsvermittelnden TER-Muffe und auch des Tetrathiapentaerythritols als Grundbaustein deutlich verbessert werden. Aus diesen konnte ein einfaches SOSK-Polymer hergestellt werden. Weitere Versuche zum Aufbau eines Stabes m{\"u}ssen aber noch untersucht werden. Um einen S-OSK-Stab aufzubauen hat sich dabei die Dithiocarbonat-Gruppe in ersten Versuchen als potenzielle geeignete Schutzgruppe f{\"u}r das Tetrathiapentaerythritol herausgestellt.}, language = {de} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Heyne2022, author = {Heyne, Benjamin}, title = {Design and Synthesis of Highly Efficient InPZnS/ZnSe/ZnS Multishell Quantum Dots and Phase Transfer via Ligand Exchange}, school = {Universit{\"a}t Potsdam}, pages = {102,LII}, year = {2022}, language = {en} } @phdthesis{Kwesiga2022, author = {Kwesiga, George}, title = {Synthesis of isoflavonoids from African medicinal plants with activity against tropical infectious diseases}, doi = {10.25932/publishup-55906}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559069}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 175}, year = {2022}, abstract = {Two approaches for the synthesis of prenylated isoflavones were explored: the 2,3-oxidative rearrangement/cross metathesis approach, using hypervalent iodine reagents as oxidants and the Suzuki-Miyaura cross-coupling/cross metathesis approach. Three natural prenylated isoflavones: 5-deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7-methoxyebenosin (64), and non-natural analogues: 7,4′-dimethoxy-8,3′-diprenylisoflavone (126j) and 4′-hydroxy-7-methoxy-8,3′-diprenylisoflavone (128) were synthesized for the first time via the 2,3-oxidative rearrangement/cross metathesis approach, using mono- or diallylated flavanones as key intermediates. The reaction of flavanones with hypervalent iodine reagents afforded isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via a 2,3-dehydrogenation. This afforded the synthesis of 7,4′-dimethoxy-8-prenylflavone (127g), 7,4′-dimethoxy-8,3′-diprenylflavone (127j), 7,4′-dihydroxy-8,3′-diprenylflavone (129) and 4′-hydroxy-7-methoxy-8,3′-diprenylflavone (130), the non-natural regioisomers of 7-methoxyebenosin, 126j, erysubin F and 128 respectively. Three natural prenylated isoflavones: 3′-prenylbiochanin A (58), neobavaisoflavone (66) and 7-methoxyneobavaisoflavone (137) were synthesized for the first time using the Suzuki-Miyaura cross-coupling/cross metathesis approach. The structures of 3′-prenylbiochanin A (58) and 5-deoxy-3′-prenylbiochanin A (59) were confirmed by single crystal X-ray diffraction analysis. The 2,3-oxidative rearrangement approach appears to be limited to the substitution pattern on both rings A and B of the flavanone while the Suzuki-Miyaura cross-coupling approach appears to be the most suitable for the synthesis of simple isoflavones or prenylated isoflavones whose prenyl substituents or allyl groups, the substituents that are essential precursors for the prenyl side chains, can be regioselectively introduced after the construction of the isoflavone core. The chalcone-flavanone hybrids 146, 147 and 148, hybrids of the naturally occurring bioactive flavanones liquiritigenin-7-methyl ether, liquiritigenin and liquiritigenin-4′-methyl ether respectively were also synthesized for the first time, using Matsuda-Heck arylation and allylic/benzylic oxidation as key steps. The intermolecular interactions of 5-deoxy-3′-prenylbiochanin A (59) and its two closely related precursors 106a and 106b was investigated by single crystal and Hirshfeld surface analyses to comprehend their different physicochemical properties. The results indicate that the presence of strong intermolecular O-H···O hydrogen bonds and an increase in the number of π-stacking interactions increases the melting point and lowers the solubility of isoflavone derivatives. However, the strong intermolecular O-H···O hydrogen bonds have a greater effect than the π-stacking interactions. 5-Deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7,4′-dihydroxy-8,3′-diprenylflavone (129), were tested against three bacterial strains and one fungal pathogen. All the three compounds were inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated isoflavone erysubin F (61) and its flavone isomer 129 showed in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. 5-Deoxy-3′-prenylbiochanin A (59) was inactive against this MRSA strain. Erysubin F (61) and its flavone isomer 129 could serve as lead compounds for the development of new alternative drugs for the treatment of MRSA infections.}, language = {en} } @phdthesis{Luedecke2022, author = {L{\"u}decke, Nils}, title = {Bio-sourced adsorbing poly(2-oxazoline)s mimicking mussel glue proteins for antifouling applications}, doi = {10.25932/publishup-54983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549836}, school = {Universit{\"a}t Potsdam}, pages = {iii, 224}, year = {2022}, abstract = {Nature developed countless systems for many applications. In maritime environments, several organisms established extra-ordinary mechanisms to attach to surfaces. Over the past years, the scientific interest to employ those mechanisms for coatings and long-lasting adhering materials gained significant attention. This work describes the synthesis of bio-inspired adsorbing copoly(2-oxazoline)s for surface coatings with protein repelling effects, mimicking mussel glue proteins. From a set of methoxy substituted phenyl, benzyl, and cinnamyl acids, 2-oxazoline monomers were synthesized. All synthesized 2-oxazolines were analyzed by FT-IR spectroscopy, NMR spectroscopy, and EI mass spectrometry. With those newly synthesized 2-oxazoline monomers and 2-ethyl-2-oxazoline, kinetic studies concerning homo- and copolymerization in a microwave reactor were conducted. The success of the polymerization reactions was demonstrated by FT-IR spectroscopy, NMR spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). The copolymerization of 2-ethyl-2-oxazoline with a selection of methoxy-substituted 2-oxazolines resulted in water-soluble copolymers. To release the adsorbing catechol and cationic units, the copoly(2-oxazoline)s were modified. The catechol units were (partially) released by a methyl aryl ether cleavage reaction. A subsequent partial acidic hydrolysis of the ethyl unit resulted in mussel glue protein-inspired catechol and cation-containing copolymers. The modified copolymers were analyzed by NMR spectroscopy, UV-VIS spectroscopy, and SEC. The catechol- and cation-containing copolymers and their precursors were examined by a Quartz Crystal Microbalance with Dissipation (QCM-D), so study the adsorption performance on gold, borosilicate, iron, and polystyrene surfaces. An exemplary study revealed that a catechol and cation-containing copoly(2-oxazoline)-coated gold surface exhibits strong protein repelling properties.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Michaelis2022, author = {Michaelis, Marcus}, title = {Molekulare Erkennung von Cellulose und Cellulose-Fragmenten durch Cellulose-Bindemodule \& Interaktionsstudien zwischen den zytoplasmatischen Dom{\"a}nen von Integrin-β1/β3 und dem fokalen Adh{\"a}sionsprotein Paxillin}, doi = {10.25932/publishup-55516}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555162}, school = {Universit{\"a}t Potsdam}, pages = {VI, 171}, year = {2022}, abstract = {Proteine erf{\"u}llen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufkl{\"a}rung derer Struktur und deren Bindungsverhaltens mit anderen Molek{\"u}len wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molek{\"u}len. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Gr{\"o}ßenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zug{\"a}ngliche Stellen im Protein f{\"u}r eine m{\"o}gliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren {\"u}ber zwischenmolekulare Kr{\"a}fte mit den Seitenketten von aromatischen Aminos{\"a}uren und {\"u}ber Wasserstoffbr{\"u}ckenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie L{\"o}slichkeit oder Stabilit{\"a}t zu beeinflussen. Es zeigte sich, das w{\"a}hrend die grafting from Methode (Polymer w{\"a}chst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins f{\"u}hrte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilit{\"a}t behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit besch{\"a}ftigte sich mit der Interaktion von zwei LIM-Dom{\"a}nen des Proteins Paxillin und der zytoplasmatischen Dom{\"a}ne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adh{\"a}sionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Gr{\"o}ßenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminos{\"a}uregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, n{\"a}mlich an den flexiblen Loop der LIM3-Dom{\"a}ne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach h{\"o}heren Affinit{\"a}t im Vergleich zu Integrin-β3 an Paxillin bindet. W{\"a}hrend Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminos{\"a}uren entfernt und erneut Bindungsstudien durchgef{\"u}hrt, welche gezeigt haben, das die Affinit{\"a}t dadurch fast vollst{\"a}ndig unterbunden wurde. Final wurde der flexible Loop der LIM3-Dom{\"a}ne in zwei andere Aminos{\"a}uresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszul{\"o}schen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Dom{\"a}ne gef{\"u}hrt haben und somit nicht als geeignete Kandidaten f{\"u}r diese Studien identifiziert werden konnten.}, language = {de} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @phdthesis{Neumann2022, author = {Neumann, Christian}, title = {Development of functionalized waterborne coatings for the production of multifunctional microapsules}, pages = {127}, year = {2022}, language = {en} } @phdthesis{Nie2022, author = {Nie, Yan}, title = {Modulating keratinocyte and induced pluripotent stem cell behavior by microenvironment design or temperature control}, pages = {xiv, 100}, year = {2022}, abstract = {Under the in vivo condition, a cell is continually interacting with its surrounding microenvironment, which is composed of its neighboring cells and the extracellular matrix (ECM). These components generate and transmit the microenvironmental signals to regulate the fate and function of the target cells. Except the signals from the microenvironment, stimuli from the ambient environment, such as temperature changes, also play an important in modulating the cell behaviors, which are considered as regulators from the macroenvironment. In this regard, recapitulation of these environmental factors to steer cell function will be of crucial importance for therapeutic purposes and tissue regeneration. Although the role of a variety of environmental factors has been evaluated, it is still challenging to identify and provide the appropriate factors, which are required for optimizing the survival of cells and for ensuring effective cell functions. Thus, in vitro recreating the environmental factors that are present in the extracellular environment would help to understand the mechanism of how cells sense and process those environmental signals. In this context, this thesis is aimed to harness these environmental parameters to guide cell responses. Here, human induced pluripotent stem cells (hiPSCs) and human keratinocytes (KTCs), HaCaT cells, were used to investigate the impact of signals from the microenvironment or stimuli from the macroenvironment. Firstly, polydopamine (PDA) or chitosan (CS) modifications were applied to generate different substrate surfaces for hiPSCs and KTCs (Chapter 4 to Chapter 6). Our results showed that the PDA modification was efficient to increase the cell-substrate adhesion and consequently promoted cell spreading. While CS modification was able to decrease the cell-substrate adhesion and enhance the cell-cell interaction, which enabled the morphology shift from monolayered cells to multicellular spheroids. The quantitative result was acquired using the atomic force microscopy (AFM)-based single-cell force spectroscopy. The balance between the cell-substrate and cell-cell adhesion yielded a net force, which determined the preference of the cell to adhere to its neighboring cells or to the substrate. The difference in the adhesive behaviors further affected the cellular function, such as the proliferation and differentiation potential of both hiPSCs and HaCaT cells. Next, the cyclic temperature changes (ΔT) were selected here to study the influence of macroenvironmental stimuli on hiPSCs and KTCs (Chapter 7 and Chapter 8). The macroenvironmental temperature ranging from 10.0 ± 0.1 °C to 37.0 ± 0.1 °C was achieved using a thermal chamber equipped with a temperature controller. This temperature range was selected to explore the responses of hiPSCs to the extreme environments, while a temperature variation between 25.0 ± 0.1 °C and 37.0 ± 0.1 °C was applied to mimic the ambient temperature variations experienced by the skin epithelial KTCs. The ΔT led to cell stiffening in both hiPSCs and HaCaT cells in a cytoskeleton-dependent manner, which was measured by AFM. Specifically, in hiPSCs, the cell stiffening was resulted from the rearrangement of the actin skeleton; in HaCaT cells, was due to the difference of the Keratin (KRT) filaments. Except for inducing cell hardening, ΔT also caused differences in the protein expression profiles in hiPSCs or HaCaT cells, compared to those without ΔT treatment, which might be attributed to the alterations in their cytoskeleton structures. To sum up, the results of the thesis demonstrated how individual factors from the micro-/macro-environment can be harnessed to modulate the behaviors of hiPSCs and HaCaT cells. Engineering the microenvironmental cues using surface modification and exploiting the macroenvironmental stimuli through temperature control were identified as precise and potent approaches to steer hiPSC and HaCaT cell behaviors. The application of AFM served as a non-invasive and real-time monitoring platform to trace the change in cell topography and mechanics induced by the environmental signals, which provide novel insights into the cell-environment interactions.}, language = {en} } @phdthesis{Pruefert2022, author = {Pr{\"u}fert, Christian}, title = {Laser ablation and matter sizing}, doi = {10.25932/publishup-55974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559745}, school = {Universit{\"a}t Potsdam}, pages = {IX, 96}, year = {2022}, abstract = {The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} } @phdthesis{Youk2022, author = {Youk, Sol}, title = {Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage}, doi = {10.25932/publishup-53909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539098}, school = {Universit{\"a}t Potsdam}, pages = {145}, year = {2022}, abstract = {The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a "functional" material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. \%, oxygen contents of up to 19 wt.\%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g-1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. \% as well as a high porosity with a specific surface area of more than 1800 m2 g-1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol-1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g-1 and 0.25 cm3 g-1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications.}, language = {en} } @phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} }