@article{PilarYesteCarlosHernandezGarridoKumkeetal.2022, author = {Pilar Yeste, Maria and Carlos Hernandez-Garrido, Juan and Kumke, Michael Uwe and Alvarado, Sarah and Cauqui, Miguel Angel and Juan Calvino, Jose and Primus, Philipp-Alexander}, title = {Low-temperature growth of reactive pyrochlore nanostructures on Zirconia-supported ceria}, series = {ACS applied nano materials}, volume = {5}, journal = {ACS applied nano materials}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.2c00416}, pages = {6316 -- 6326}, year = {2022}, abstract = {The use of a catalyst support for the design of nanoscale heterogeneous catalysts based on cerium oxide offers vast possibilities for future catalyst development, particularly with regard to an increased focus on the use of renewable biogas and an emerging hydrogen economy. In this study, zirconia-supported ceria catalysts were synthesized, activated by using different thermochemical treatments, and characterized by way of temperature-programmed reduction (TPR), oxygen storage capacity, Xray diffraction, electron microscopy, and luminescence spectroscopy using Eu3+ as a spectroscopic probe. Through reduction-oxidation pretreatment routines, reactive pyrochlore structures were created at temperatures as low as 600 degrees C and identified through TPR and electron microscopy experiments. A structural relationship and alignment of the crystal planes is revealed in high-resolution scanning transmission electron microscopy experiments through the digital diffraction patterns. Low-temperature pretreatment induces the formation of reactive pyrochlore domains under retention of the surface area of the catalyst system, and no further morphological changes are detected. Furthermore, the formation of pyrochlore domains achieved through severe reduction and mild reoxidation (SRMO) treatments is reversible. Over multiple alternating SRMO and severe reduction and severe reoxidation (SRSO) treatments, europium spectroscopy and TPR results indicate that pyrochlore structures are recreated over consecutive treatments, whenever the mild oxidation step at 500 degrees C is the last treatment (SRMO, SRMO-SRSO-SRMO, etc.).}, language = {en} } @article{UnuabonahNoeskeWeberetal.2019, author = {Unuabonah, Emmanuel Iyayi and N{\"o}ske, Robert and Weber, Jens and G{\"u}nter, Christina and Taubert, Andreas}, title = {New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water}, series = {Beilstein journal of nanotechnology}, volume = {10}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.10.11}, pages = {119 -- 131}, year = {2019}, abstract = {A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between approximate to 150 and 300 m(2)/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 degrees C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible.}, language = {en} } @article{TaubertLerouxRabuetal.2019, author = {Taubert, Andreas and Leroux, Fabrice and Rabu, Pierre and de Zea Bermudez, Veronica}, title = {Advanced hybrid nanomaterials}, series = {Beilstein journal of nanotechnology}, volume = {10}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt am Main}, issn = {2190-4286}, doi = {10.3762/bjnano.10.247}, pages = {2563 -- 2567}, year = {2019}, language = {en} }