@phdthesis{Hoischen2018, author = {Hoischen, Clemens}, title = {Multi-Messenger Astronomy with H.E.S.S: the Starburst Galaxy NGC253 and the Search for Short Time-Scale Transients}, doi = {10.25932/publishup-42452}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424521}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Gamma-ray astronomy has proven to provide unique insights into cosmic-ray accelerators in the past few decades. By combining information at the highest photon energies with the entire electromagnetic spectrum in multi-wavelength studies, detailed knowledge of non-thermal particle populations in astronomical objects and systems has been gained: Many individual classes of gamma-ray sources could be identified inside our galaxy and outside of it. Different sources were found to exhibit a wide range of temporal evolution, ranging from seconds to stable behaviours over many years of observations. With the dawn of both neutrino- and gravitational wave astronomy, additional messengers have come into play over the last years. This development presents the advent of multi-messenger astronomy: a novel approach not only to search for sources of cosmic rays, but for astronomy in general. In this thesis, both traditional multi-wavelength studies and multi-messenger studies will be presented. They were carried out with the H.E.S.S. experiment, an imaging air Cherenkov telescope array located in the Khomas Highland of Namibia. H.E.S.S. has entered its second phase in 2012 with the addition of a large, fifth telescope. While the initial array was limited to the study of gamma-rays with energies above 100 GeV, the new instrument allows to access gamma-rays with energies down to a few tens of GeV. Strengths of the multi-wavelength approach will be demonstrated at the example of the galaxy NGC253, which is undergoing an episode of enhanced star-formation. The gamma-ray emission will be discussed in light of all the information on this system available from radio, infrared and X-rays. These wavelengths reveal detailed information on the population of supernova remnants, which are suspected cosmic-ray accelerators. A broad-band gamma-ray spectrum is derived from H.E.S.S. and Fermi-LAT data. The improved analysis of H.E.S.S. data provides a measurement which is no longer dominated by systematic uncertainties. The long-term behaviour of cosmic rays in the starburst galaxy NGC253 is finally characterised. In contrast to the long time-scale evolution of a starburst galaxy, multi-messenger studies are especially intriguing when shorter time-scales are being probed. A prime example of a short time-scale transient are Gamma Ray Bursts. The efforts to understand this phenomenon effectively founded the branch of gamma-ray astronomy. The multi-messenger approach allows for the study of illusive phenomena such as Gamma Ray Bursts and other transients using electromagnetic radiation, neutrinos, cosmic rays and gravitational waves contemporaneously. With contemporaneous observations getting more important just recently, the execution of such observation campaigns still presents a big challenge due to the different limitations and strengths of the infrastructures. An alert system for transient phenomena has been developed over the course of this thesis for H.E.S.S. It aims to address many follow-up challenges in order to maximise the science return of the new large telescope, which is able to repoint much faster than the initial four telescopes. The system allows for fully automated observations based on scientific alerts from any wavelength or messenger and allows H.E.S.S. to participate in multi-messenger campaigns. Utilising this new system, many interesting multi-messenger observation campaigns have been performed. Several highlight observations with H.E.S.S. are analysed, presented and discussed in this work. Among them are observations of Gamma Ray Bursts with low latency and low energy threshold, the follow-up of a neutrino candidate in spatial coincidence with a flaring active galactic nucleus and of the merger of two neutron stars, which was revealed by the coincidence of gravitational waves and a Gamma-Ray Burst.}, language = {en} }