@misc{YadavalliLoebnerPapkeetal.2018, author = {Yadavalli, Nataraja Sekhar and Loebner, Sarah and Papke, Thomas and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {A comparative study of photoinduced deformation in azobenzene containing polymer films}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {458}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413510}, year = {2018}, abstract = {In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport.}, language = {en} } @phdthesis{Yadavalli2014, author = {Yadavalli, Nataraja Sekhar}, title = {Advances in experimental methods to probe surface relief grating formation mechanism in photosensitive materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71213}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {When azobenzene-modified photosensitive polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the electric field vector distribution resulting in the formation of surface relief grating (SRG). The exact correspondence of the electric field vector orientation in interference pattern in relation to the presence of local topographic minima or maxima of SRG is in general difficult to determine. In my thesis, we have established a systematic procedure to accomplish the correlation between different interference patterns and the topography of SRG. For this, we devise a new setup combining an atomic force microscope and a two-beam interferometer (IIAFM). With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. To validate our results, we have compared two photosensitive materials named in short as PAZO and trimer. This is the first time that an absolute correspondence between the local distribution of electric field vectors of interference pattern and the local topography of the relief grating could be established exhaustively. In addition, using our IIAFM we found that for a certain polarization combination of two orthogonally polarized interfering beams namely SP (↕, ↔) interference pattern, the topography forms SRG with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures below diffraction limit with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We have also probed for the stresses induced during the polymer mass transport by placing an ultra-thin gold film on top (5-30 nm). During irradiation, the metal film not only deforms along with the SRG formation, but ruptures in regular and complex manner. The morphology of the cracks differs strongly depending on the electric field distribution in the interference pattern even when the magnitude and the kinetic of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. The neutron reflectivity measurements of the metal/polymer interface indicate the penetration of metal layer within the polymer resulting in the formation of bonding layer that confirms the transduction of light induced stresses in the polymer layer to a metal film.}, language = {en} } @misc{LoebnerJelkenYadavallietal.2017, author = {Loebner, Sarah and Jelken, Joachim and Yadavalli, Nataraja Sekhar and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {Motion of adsorbed nano-particles on azobenzene containing polymer films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400423}, pages = {11}, year = {2017}, abstract = {We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.}, language = {en} } @misc{DiFlorioBruendermannYadavallietal.2013, author = {Di Florio, Giuseppe and Br{\"u}ndermann, Erik and Yadavalli, Nataraja Sekhar and Santer, Svetlana and Havenith, Martina}, title = {Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95233}, pages = {1544 -- 1554}, year = {2013}, abstract = {We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy.}, language = {en} }