@misc{TopcuFruehwirthMoseretal.2018, author = {Top{\c{c}}u, {\c{C}}ağda{\c{s}} and Fr{\"u}hwirth, Matthias and Moser, Maximilian and Rosenblum, Michael and Pikovskij, Arkadij}, title = {Disentangling respiratory sinus arrhythmia in heart rate variability records}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {913}, issn = {1866-8372}, doi = {10.25932/publishup-43631}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436315}, pages = {15}, year = {2018}, abstract = {Objective: Several different measures of heart rate variability, and particularly of respiratory sinus arrhythmia, are widely used in research and clinical applications. For many purposes it is important to know which features of heart rate variability are directly related to respiration and which are caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a nonlinear disentanglement of the heart rate variability into the respiratory-related component and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets from healthy subjects. In all cases we show how the disentanglement is manifested in the different measures of heart rate variability. Significance: The suggested technique can be exploited as a universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in cases when effects of other factors on the heart rate variability are in focus.}, language = {en} } @misc{RosenblumPikovskijKuehnetal.2021, author = {Rosenblum, Michael and Pikovskij, Arkadij and K{\"u}hn, Andrea A. and Busch, Johannes Leon}, title = {Real-time estimation of phase and amplitude with application to neural data}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549630}, pages = {11}, year = {2021}, abstract = {Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal's past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient's beta-band brain activity.}, language = {en} } @misc{PimenovaGoldobinRosenblumetal.2016, author = {Pimenova, Anastasiya V. and Goldobin, Denis S. and Rosenblum, Michael and Pikovskij, Arkadij}, title = {Interplay of coupling and common noise at the transition to synchrony in oscillator populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103471}, pages = {7}, year = {2016}, abstract = {There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes.}, language = {en} } @misc{ClusellaPolitiRosenblum2016, author = {Clusella, Pau and Politi, Antonio and Rosenblum, Michael}, title = {A minimal model of self-consistent partial synchrony}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {890}, issn = {1866-8372}, doi = {10.25932/publishup-43626}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436266}, pages = {19}, year = {2016}, abstract = {We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.}, language = {en} } @misc{CestnikRosenblum2018, author = {Cestnik, Rok and Rosenblum, Michael}, title = {Inferring the phase response curve from observation of a continuously perturbed oscillator}, series = {Scientific Reports}, journal = {Scientific Reports}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418425}, pages = {10}, year = {2018}, abstract = {Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force.}, language = {en} } @misc{CestnikRosenblum2017, author = {Cestnik, Rok and Rosenblum, Michael}, title = {Reconstructing networks of pulse-coupled oscillators from spike trains}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {760}, issn = {1866-8372}, doi = {10.25932/publishup-43628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436285}, pages = {8}, year = {2017}, abstract = {We present an approach for reconstructing networks of pulse-coupled neuronlike oscillators from passive observation of pulse trains of all nodes. It is assumed that units are described by their phase response curves and that their phases are instantaneously reset by incoming pulses. Using an iterative procedure, we recover the properties of all nodes, namely their phase response curves and natural frequencies, as well as strengths of all directed connections.}, language = {en} }