@phdthesis{Friedrich2020, author = {Friedrich, Alexander}, title = {Minimizers of generalized Willmore energies and applications in general relativity}, doi = {10.25932/publishup-48142}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481423}, school = {Universit{\"a}t Potsdam}, pages = {100}, year = {2020}, abstract = {Das Willmore Funktional ist eine Funktion die jeder Fl{\"a}che in einer Riemannschen Mannigfaltigkeit, ihre totale mittlere Kr{\"u}mmung zuweist. Ein klassisches Problem der Differentialgeometrie ist es geschlossene (kompakt und ohne Rand) Fl{\"a}chen zu finden die das Willmore funktional minimieren, beziehungsweise die kritische Punkte des Willmore Funktionals sind. In dieser Doktorarbeit entwickeln wir ein Konzept von verallgemeinerten Willmore Funktionalen f{\"u}r Fl{\"a}chen in Riemannschen Mannigfaltigkeiten, wobei wir uns von physikalischen Modellen leiten lassen. Insbesondere ist hier die Hawking Energie der allgemeinen Relativit{\"a}tstheorie und die Biegungsenergie von d{\"u}nnen Membranen zu nennen. F{\"u}r dieses verallgemeinerten Willmore Funktionale beweisen wir die Existenz von Minimieren mit vorgeschriebenen Fl{\"a}cheninhalt, in einer geeigneten Klasse von verallgemeinerten Fl{\"a}chen. Insbesondere konstruieren wir Minimierer der oben erw{\"a}hnten Biegungsenergie mit vorgeschrieben Fl{\"a}cheninhalt und vorgeschriebenen, eingeschlossenem Volumen. Außerdem beweisen wir, dass kritische Punkte von verallgemeinerten Willmore Funktionalen mit vorgeschriebenen Fl{\"a}cheninhalt abseits endlich vieler Punkte glatt sind. Dabei st{\"u}tzen wir uns, wie auch im folgenden, auf die bestehende Theorie f{\"u}r das Willmore Funktional. An diese allgemeinen Resultate schließen wir eine detailliertere Analyse der Hawking Energie an. Im Kontext der allgemeinen Relativit{\"a}tstheorie beschreibt die Umgebungsmannigfaltigkeit den Raum zu einem Zeitpunkt. Daher sind wir an dem Wechselspiel zwischen der Hawking Energie und der umgebenden Mannigfaltigkeit interessiert. Wir charakterisieren Punkte in der umgebenden Mannigfaltigkeit f{\"u}r die es in jeder Umgebung eine kritische Fl{\"a}che mit vorgeschriebenem, kleinem Fl{\"a}cheninhalt gibt. Diese Punnkte werden als Konzentrationspunkte der Hawking Energie interpretiert. Außerdem berechnen wir eine Entwicklung der Hawking Energie auf kleinen, runden Sph{\"a}ren. Dadurch k{\"o}nnen wir eine Art Energiedichte der Hawking Energie identifizieren. Hierbei ist anzumerken, dass unsere Resultate im Kontrast zu Ergebnissen in der Literatur stehen. Dort wurde berechnet, dass die Entwicklung der Hawking Energie auf Sph{\"a}ren im Lichtkegel eines Punktes der umgebenden Mannigfaltigkeit in f{\"u}hrender Ordnung proportional zur der klassischen Energiedichte der allgemeinen Relativit{\"a}tstheorie ist. Zu diesem Zeitpunkt ist nicht klar wie diese Diskrepanz zu begr{\"u}nden ist. Ferner betrachten wir asymptotisch Schwarzschild Mannigfaltigkeiten. Sie sind ein Spezialfall von asymptotisch flachen Mannigfaltigkeiten, welche in der allgemeinen Relativit{\"a}tstheorie als Modelle f{\"u}r isolierte Systeme dienen. Die Schwarzschild Raumzeit selbst ist eine rotationssymmetrische Raumzeit die schwarzen Loch beschreibt. In diesen asymptotisch Schwarzschild Mannigfaltigkeiten konstruieren wir eine Bl{\"a}tterung des {\"a}ußeren Bereiches durch kritische Fl{\"a}chen der Hawking Energie mit vorgeschriebenen Fl{\"a}cheninhalt. Diese Bl{\"a}tterung kann in einem verallgemeinertem Sinne als Schwerpunkt des isolierten Systems betrachtet werden. Außerdem zeigen wir, dass die Hawking Energie entlang der Bl{\"a}tterung w{\"a}chst je gr{\"o}ßer die Fl{\"a}chen werden.}, language = {en} }