@phdthesis{Galetzka2022, author = {Galetzka, Fabian}, title = {Investigating and improving background context consistency in neural conversation models}, doi = {10.25932/publishup-58463}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-584637}, school = {Universit{\"a}t Potsdam}, pages = {viii, 173}, year = {2022}, abstract = {Neural conversation models aim to predict appropriate contributions to a (given) conversation by using neural networks trained on dialogue data. A specific strand focuses on non-goal driven dialogues, first proposed by Ritter et al. (2011): They investigated the task of transforming an utterance into an appropriate reply. Then, this strand evolved into dialogue system approaches using long dialogue histories and additional background context. Contributing meaningful and appropriate to a conversation is a complex task, and therefore research in this area has been very diverse: Serban et al. (2016), for example, looked into utilizing variable length dialogue histories, Zhang et al. (2018) added additional context to the dialogue history, Wolf et al. (2019) proposed a model based on pre-trained Self-Attention neural networks (Vasvani et al., 2017), and Dinan et al. (2021) investigated safety issues of these approaches. This trend can be seen as a transformation from trying to somehow carry on a conversation to generating appropriate replies in a controlled and reliable way. In this thesis, we first elaborate the meaning of appropriateness in the context of neural conversation models by drawing inspiration from the Cooperative Principle (Grice, 1975). We first define what an appropriate contribution has to be by operationalizing these maxims as demands on conversation models: being fluent, informative, consistent towards given context, coherent and following a social norm. Then, we identify different targets (or intervention points) to achieve the conversational appropriateness by investigating recent research in that field. In this thesis, we investigate the aspect of consistency towards context in greater detail, being one aspect of our interpretation of appropriateness. During the research, we developed a new context-based dialogue dataset (KOMODIS) that combines factual and opinionated context to dialogues. The KOMODIS dataset is publicly available and we use the data in this thesis to gather new insights in context-augmented dialogue generation. We further introduced a new way of encoding context within Self-Attention based neural networks. For that, we elaborate the issue of space complexity from knowledge graphs, and propose a concise encoding strategy for structured context inspired from graph neural networks (Gilmer et al., 2017) to reduce the space complexity of the additional context. We discuss limitations of context-augmentation for neural conversation models, explore the characteristics of knowledge graphs, and explain how we create and augment knowledge graphs for our experiments. Lastly, we analyzed the potential of reinforcement and transfer learning to improve context-consistency for neural conversation models. We find that current reward functions need to be more precise to enable the potential of reinforcement learning, and that sequential transfer learning can improve the subjective quality of generated dialogues.}, language = {en} } @phdthesis{Loster2021, author = {Loster, Michael}, title = {Knowledge base construction with machine learning methods}, doi = {10.25932/publishup-50145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-501459}, school = {Universit{\"a}t Potsdam}, pages = {ii, 130}, year = {2021}, abstract = {Modern knowledge bases contain and organize knowledge from many different topic areas. Apart from specific entity information, they also store information about their relationships amongst each other. Combining this information results in a knowledge graph that can be particularly helpful in cases where relationships are of central importance. Among other applications, modern risk assessment in the financial sector can benefit from the inherent network structure of such knowledge graphs by assessing the consequences and risks of certain events, such as corporate insolvencies or fraudulent behavior, based on the underlying network structure. As public knowledge bases often do not contain the necessary information for the analysis of such scenarios, the need arises to create and maintain dedicated domain-specific knowledge bases. This thesis investigates the process of creating domain-specific knowledge bases from structured and unstructured data sources. In particular, it addresses the topics of named entity recognition (NER), duplicate detection, and knowledge validation, which represent essential steps in the construction of knowledge bases. As such, we present a novel method for duplicate detection based on a Siamese neural network that is able to learn a dataset-specific similarity measure which is used to identify duplicates. Using the specialized network architecture, we design and implement a knowledge transfer between two deduplication networks, which leads to significant performance improvements and a reduction of required training data. Furthermore, we propose a named entity recognition approach that is able to identify company names by integrating external knowledge in the form of dictionaries into the training process of a conditional random field classifier. In this context, we study the effects of different dictionaries on the performance of the NER classifier. We show that both the inclusion of domain knowledge as well as the generation and use of alias names results in significant performance improvements. For the validation of knowledge represented in a knowledge base, we introduce Colt, a framework for knowledge validation based on the interactive quality assessment of logical rules. In its most expressive implementation, we combine Gaussian processes with neural networks to create Colt-GP, an interactive algorithm for learning rule models. Unlike other approaches, Colt-GP uses knowledge graph embeddings and user feedback to cope with data quality issues of knowledge bases. The learned rule model can be used to conditionally apply a rule and assess its quality. Finally, we present CurEx, a prototypical system for building domain-specific knowledge bases from structured and unstructured data sources. Its modular design is based on scalable technologies, which, in addition to processing large datasets, ensures that the modules can be easily exchanged or extended. CurEx offers multiple user interfaces, each tailored to the individual needs of a specific user group and is fully compatible with the Colt framework, which can be used as part of the system. We conduct a wide range of experiments with different datasets to determine the strengths and weaknesses of the proposed methods. To ensure the validity of our results, we compare the proposed methods with competing approaches.}, language = {en} }