@misc{CoutoCruzErtanetal.2017, author = {Couto, Rafael C. and Cruz, Vinicius V. and Ertan, Emelie and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimar{\~a}es, Freddy F. and {\AA}gren, Hans and Gel'mukhanov, Faris and Odelius, Michael and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Selective gating to vibrational modes through resonant X-ray scattering}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1124}, issn = {1866-8372}, doi = {10.25932/publishup-43692}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436926}, pages = {9}, year = {2017}, abstract = {The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.}, language = {en} }