@phdthesis{WijesinghaAhchige2022, author = {Wijesingha Ahchige, Micha}, title = {Canalization of plant metabolism and yield}, doi = {10.25932/publishup-54884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548844}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 160}, year = {2022}, abstract = {Plant metabolism is the main process of converting assimilated carbon to different crucial compounds for plant growth and therefore crop yield, which makes it an important research topic. Although major advances in understanding genetic principles contributing to metabolism and yield have been made, little is known about the genetics responsible for trait variation or canalization although the concepts have been known for a long time. In light of a growing global population and progressing climate change, understanding canalization of metabolism and yield seems ever-more important to ensure food security. Our group has recently found canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing that the concept of canalization applies on metabolism. In this work two approaches to investigate plant metabolic canalization and one approach to investigate yield canalization are presented. In the first project, primary and secondary metabolic data from Arabidopsis thaliana and Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was used to calculate cross-environment coefficient of variations or fold-changes of metabolite levels per genotype and used as input for genome wide association studies. While primary metabolites have lower CV across conditions and show few and mostly weak associations to genomic regions, secondary metabolites have higher CV and show more, strong metabolite to genome associations. As candidate genes, both potential regulatory genes as well as metabolic genes, can be found, albeit most metabolic genes are rarely directly related to the target metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic network structure for canalization of metabolism. In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant increase of CV across different watering conditions. Another such mutant of a protein putatively involved in amino acid transport, selected as candidate for phenylalanine canalization shows a similar tendency to increased CV without statistical significance. This potential role of two genes involved in metabolism supports the hypothesis of structural relevance of metabolism for its own stability. In the third project, a mutant for a putative disulfide isomerase, important for thylakoid biogenesis, is characterized by a multi-omics approach. The mutant was characterized previously in a yield stability screening and showed a variegated leaf phenotype, ranging from green leaves with wild type levels of chlorophyll over differently patterned variegated to completely white leaves almost completely devoid of photosynthetic pigments. White mutant leaves show wild type transcript levels of photosystem assembly factors, with the exception of ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. Green mutant leaves show an upregulation of these assembly factors, possibly acting as overcompensation for partially defective disulfide isomerase, which seems sufficient for proper chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and pattern of variegation varies from plant to plant and may be effected by external factors, the effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole leaf surface area for photosynthetic activity.}, language = {en} }