@phdthesis{Blume2008, author = {Blume, Theresa}, title = {Hydrological processes in volcanic ash soils : measuring, modelling and understanding runoff generation in an undisturbed catchment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16552}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Streamflow dynamics in mountainous environments are controlled by runoff generation processes in the basin upstream. Runoff generation processes are thus a major control of the terrestrial part of the water cycle, influencing both, water quality and water quantity as well as their dynamics. The understanding of these processes becomes especially important for the prediction of floods, erosion, and dangerous mass movements, in particular as hydrological systems often show threshold behavior. In case of extensive environmental changes, be it in climate or in landuse, the understanding of runoff generation processes will allow us to better anticipate the consequences and can thus lead to a more responsible management of resources as well as risks. In this study the runoff generation processes in a small undisturbed catchment in the Chilean Andes were investigated. The research area is characterized by steep hillslopes, volcanic ash soils, undisturbed old growth forest and high rainfall amounts. The investigation of runoff generation processes in this data scarce area is of special interest as a) little is known on the hydrological functioning of the young volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities, b) no process studies have been carried out in this area at either slope or catchment scale, and c) understanding the hydrological processes in undisturbed catchments will provide a basis to improve our understanding of disturbed systems, the shift in processes that followed the disturbance and maybe also future process evolution necessary for the achievement of a new steady state. The here studied catchment has thus the potential to serve as a reference catchment for future investigations. As no long term data of rainfall and runoff exists, it was necessary to replace long time series of data with a multitude of experimental methods, using the so called "multi-method approach". These methods cover as many aspects of runoff generation as possible and include not only the measurement of time series such as discharge, rainfall, soil water dynamics and groundwater dynamics, but also various short term measurements and experiments such as determination of throughfall amounts and variability, water chemistry, soil physical parameters, soil mineralogy, geo-electrical soundings and tracer techniques. Assembling the results like pieces of a puzzle produces a maybe not complete but nevertheless useful picture of the dynamic ensemble of runoff generation processes in this catchment. The employed methods were then evaluated for their usefulness vs. expenditures (labour and financial costs). Finally, the hypotheses - the perceptual model of runoff generation generated from the experimental findings - were tested with the physically based model Catflow. Additionally the process-based model Wasim-ETH was used to investigate the influence of landuse on runoff generation at the catchment scale. An initial assessment of hydrologic response of the catchment was achieved with a linear statistical model for the prediction of event runoff coefficients. The parameters identified as best predictors give a first indication of important processes. Various results acquired with the "multi-method approach" show that response to rainfall is generally fast. Preferential vertical flow is of major importance and is reinforced by hydrophobicity during the summer months. Rapid lateral water transport is necessary to produce the fast response signal, however, while lateral subsurface flow was observed at several soil moisture profiles, the location and type of structures causing fast lateral flow on the hillslope scale is still not clear and needs to be investigated in more detail. Surface runoff has not been observed and is unlikely due to the high hydraulic conductivities of the volcanic ash soils. Additionally, a large subsurface storage retains most of the incident rainfall amount during events (>90\%, often even >95\%) and produces streamflow even after several weeks of drought. Several findings suggest a shift in processes from summer to winter causing changes in flow patterns, changes in response of stream chemistry to rainfall events and also in groundwater-surface water interactions. The results of the modelling study confirm the importance of rapid and preferential flow processes. However, due to the limited knowledge on subsurface structures the model still does not fully capture runoff response. Investigating the importance of landuse on runoff generation showed that while peak runoff generally increased with deforested area, the location of these areas also had an effect. Overall, the "multi-method approach" of replacing long time series with a multitude of experimental methods was successful in the identification of dominant hydrological processes and thus proved its applicability for data scarce catchments under the constraint of limited resources.}, language = {en} } @phdthesis{Melnick2007, author = {Melnick, Daniel}, title = {Neogene seismotectonics of the south-central Chile margin : subduction-related processes over various temporal and spatial scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12091}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The Andean orogen is the most outstanding example of mountain building caused by the subduction of oceanic below continental lithosphere. The Andes formed by the subduction of the Nazca and Antarctic oceanic plates under the South American continent over at least ~200 million years. Tectonic and climatic conditions vary markedly along this north-south-oriented plate boundary, which thus represents an ideal natural laboratory to study tectonic and climatic segmentation processes and their possible feedbacks. Most of the seismic energy on Earth is released by earthquakes in subduction zones, like the giant 1960, Mw 9.5 event in south-central Chile. However, the segmentation mechanisms of surface deformation during and between these giant events have remained poorly understood. The Andean margin is a key area to study seismotectonic processes because of its along-strike variability under similar plate kinematic boundary conditions. Active deformation has been widely studied in the central part of the Andes, but the south-central sector of the orogen has gathered less research efforts. This study focuses on tectonics at the Neogene and late Quaternary time scales in the Main Cordillera and coastal forearc of the south-central Andes. For both domains I document the existence of previously unrecognized active faults and present estimates of deformation rates and fault kinematics. Furthermore these data are correlated to address fundamental mountain building processes like strain partitioning and large-scale segmentation. In the Main Cordillera domain and at the Neogene timescale, I integrate structural and stratigraphic field observations with published isotopic ages to propose four main phases of coupled styles of tectonics and distribution of volcanism and magmatism. These phases can be related to the geometry and kinematics of plate convergence. At the late Pleistocene timescale, I integrate field observations with lake seismic and bathymetric profiles from the Lago Laja region, located near the Andean drainage divide. These data reveal Holocene extensional faults, which define the Lago Laja fault system. This fault system has no significant strike-slip component, contrasting with the Liqui{\~n}e-Ofqui dextral intra-arc system to the south, where Holocene strike-slip markers are ubiquitous. This contrast in structural style along the arc is coincident with a marked change in along-strike fault geometries in the forearc, across the Arauco Peninsula. Thereon I propose that a net gradient in the degree of partitioning of oblique subduction occurs across the Arauco transition zone. To the north, the margin parallel component of oblique convergence is distributed in a wide zone of diffuse deformation, while to the south it is partitioned along an intra-arc, margin-parallel strike-slip fault zone. In the coastal forearc domain and at the Neogene timescale, I integrate structural and stratigraphic data from field observations, industry reflection-seismic profiles and boreholes to emphasize the influence of climate-driven filling of the trench on the mechanics and kinematics of the margin. I show that forearc basins in the 34-45°S segment record Eocene to early Pliocene extension and subsidence followed by ongoing uplift and contraction since the late Pliocene. I interpret the first stage as caused by tectonic erosion due to high plate convergence rates and reduced trench fill. The subsequent stage, in turn, is related to accretion caused by low convergence rates and the rapid increase in trench fill after the onset of Patagonian glaciations and climate-driven exhumation at ~6-5 Ma. On the late Quaternary timescale, I integrate off-shore seismic profiles with the distribution of deformed marine terraces from Isla Santa Mar{\´i}a, dated by the radiocarbon method, to show that inverted reverse faulting controls the coastal geomorphology and segmentation of surface deformation. There, a cluster of microearthquakes illuminates one of these reverse faults, which presumingly reaches the plate interface. Furthermore, I use accounts of coseismic uplift during the 1835 M>8 earthquake made by Charles Darwin, to propose that this active reverse fault has been mechanically coupled to the megathrust. This has important implications on the assessment of seismic hazards in this, and other similar regions. These results underscore the need to study plate-boundary deformation processes at various temporal and spatial scales and to integrate geomorphologic, structural, stratigraphic, and geophysical data sets in order to understand the present distribution and causes of tectonic segmentation.}, language = {en} } @phdthesis{Mohr2013, author = {Mohr, Christian Heinrich}, title = {Hydrological and erosion responses to man-made and natural disturbances : insights from forested catchments in South-central Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70146}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Logging and large earthquakes are disturbances that may significantly affect hydrological and erosional processes and process rates, although in decisively different ways. Despite numerous studies that have documented the impacts of both deforestation and earthquakes on water and sediment fluxes, a number of details regarding the timing and type of de- and reforestation; seismic impacts on subsurface water fluxes; or the overall geomorphic work involved have remained unresolved. The main objective of this thesis is to address these shortcomings and to better understand and compare the hydrological and erosional process responses to such natural and man-made disturbances. To this end, south-central Chile provides an excellent natural laboratory owing to its high seismicity and the ongoing conversion of land into highly productive plantation forests. In this dissertation I combine paired catchment experiments, data analysis techniques, and physics-based modelling to investigate: 1) the effect of plantation forests on water resources, 2) the source and sink behavior of timber harvest areas in terms of overland flow generation and sediment fluxes, 3) geomorphic work and its efficiency as a function of seasonal logging, 4) possible hydrologic responses of the saturated zone to the 2010 Maule earthquake and 5) responses of the vadose zone to this earthquake. Re 1) In order to quantify the hydrologic impact of plantation forests, it is fundamental to first establish their water balances. I show that tree species is not significant in this regard, i.e. Pinus radiata and Eucalyptus globulus do not trigger any decisive different hydrologic response. Instead, water consumption is more sensitive to soil-water supply for the local hydro-climatic conditions. Re 2) Contradictory opinions exist about whether timber harvest areas (THA) generate or capture overland flow and sediment. Although THAs contribute significantly to hydrology and sediment transport because of their spatial extent, little is known about the hydrological and erosional processes occurring on them. I show that THAs may act as both sources and sinks for overland flow, which in turn intensifies surface erosion. Above a rainfall intensity of ~20 mm/h, which corresponds to <10\% of all rainfall, THAs may generate runoff whereas below that threshold they remain sinks. The overall contribution of Hortonian runoff is thus secondary considering the local rainfall regime. The bulk of both runoff and sediment is generated by Dunne, saturation excess, overland flow. I also show that logging may increase infiltrability on THAs which may cause an initial decrease in streamflow followed by an increase after the groundwater storage has been refilled. Re 3) I present changes in frequency-magnitude distributions following seasonal logging by applying Quantile Regression Forests at hitherto unprecedented detail. It is clearly the season that controls the hydro-geomorphic work efficiency of clear cutting. Logging, particularly dry seasonal logging, caused a shift of work efficiency towards less flashy and mere but more frequent moderate rainfall-runoff events. The sediment transport is dominated by Dunne overland flow which is consistent with physics-based modelling using WASA-SED. Re 4) It is well accepted that earthquakes may affect hydrological processes in the saturated zone. Assuming such flow conditions, consolidation of saturated saprolitic material is one possible response. Consolidation raises the hydraulic gradients which may explain the observed increase in discharge following earthquakes. By doing so, squeezed water saturates the soil which in turn increases the water accessible for plant transpiration. Post-seismic enhanced transpiration is reflected in the intensification of diurnal cycling. Re 5) Assuming unsaturated conditions, I present the first evidence that the vadose zone may also respond to seismic waves by releasing pore water which in turn feeds groundwater reservoirs. By doing so, water tables along the valley bottoms are elevated thus providing additional water resources to the riparian vegetation. By inverse modelling, the transient increase in transpiration is found to be 30-60\%. Based on the data available, both hypotheses, are not testable. Finally, when comparing the hydrological and erosional effects of the Maule earthquake with the impact of planting exotic plantation forests, the overall observed earthquake effects are comparably small, and limited to short time scales.}, language = {en} } @phdthesis{Rehak2008, author = {Rehak, Katrin}, title = {Pliocene-Pleistocene landscape evolution in south-central Chile : interactions between tectonic, geomorphic, and climatic processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19793}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Landscapes evolve in a complex interplay between climate and tectonics. Thus, the geomorphic characteristics of a landscape can only be understood if both, climatic and tectonic signals of past and ongoing processes can be identified. In order to evaluate the impact of both forcing factors it is crucial to quantify the evolution of geomorphic markers in natural environments. The Cenozoic Andes are an ideal setting to evaluate tectonic and climatic aspects of landscape evolution at different time and length scales in different natural compartments. The Andean Cordillera constitutes the type subduction orogen and is associated with the subduction of the oceanic Nazca Plate beneath the South American continent since at least 200 million years. In Chile and the adjacent regions this convergent margin is characterized by active tectonics, volcanism, and mountain building. Importantly, along the coast of Chile megathrust earthquakes occur frequently and influence landscape evolution. In fact, the largest earthquake ever recorded occurred in south-central Chile in 1960 and comprised a rupture zone of ~ 1000 km length. However, on longer time scales beyond historic documentation of seismicity it is not well known, how such seismotectonic segments have behaved and how they influence the geomorphic evolution of the coastal realms. With several semi-independent morphotectonic segments, recurrent megathrust earthquakes, and a plethora of geomorphic features indicating sustained tectonism, the margin of Chile is thus a key area to study relationships between surface processes and tectonics. In this study, I combined geomorphology, geochronology, sedimentology, and morphometry to quantify the Pliocene-Pleistocene landscape evolution of the tectonically active south-central Chile forearc. Thereby, I provide (1) new results about the influence of seismotectonic forearc segmentation on the geomorphic evolution and (2) new insights in the interaction between climate and tectonics with respect to the morphology of the Chilean forearc region. In particular, I show that the forearc is characterized by three long-term segments that are not correlated with short-lived earthquake-rupture zones that may. These segments are the Nahuelbuta, Tolt{\´e}n, and Bueno segments, each recording a distinct geomorphic and tectonic evolution. The Nahuelbuta and Bueno segments are undergoing active tectonic uplift. The long-term behavior of these two segments is manifested in form of two doubly plunging, growing antiforms that constitute an integral part of the Coastal Cordillera and record the uplift of marine and river terraces. In addition, these uplifting areas have caused major changes in flow directions or rivers. In contrast, the Tolt{\´e}n segment, situated between the two other segments, appears to be quasi-stable. In order to further quantify uplift and incision in the actively deforming Nahuelbuta segment, I dated an erosion surface and fluvial terraces in the Coastal Cordillera with cosmogenic 10Be and 26Al and optically stimulated luminescence, respectively. According to my results, late Pleistocene uplift rates corresponding to 0.88 mm a-1 are faster than surface-uplift rates averaging over the last 5 Ma, which are in the range of 0.21 mm a-1. This discrepancy suggests that surface uplift is highly variable in time and space and might preferably concentrate along reverse faults as indicated by a late Pleistocene flow reversal. In addition, the results of exposure dating with cosmogenic 10Be and 26Al indicate that the morphotectonic segmentation of this region of the forearc has been established in Pliocene time, coeval with the initiation of uplift of the Coastal Cordillera about 5 Ma ago, inferred to be related to a shift in subduction mode from erosion to accretion. Finally, I dated volcanic clasts obtained from alluvial surfaces in the Central Depression, a low-relief sector separating the Coastal from the Main Cordillera, with stable cosmogenic 3He and 21Ne, in order to reveal the controls of sediment accumulation in the forearc. My results document that these gently sloping surfaces have been deposited 150 to 300 ka ago. This deposition may be related to changes in the erosional regime during glacial episodes. Taken together, the data indicates that the overall geomorphic expression of the forearc is of post-Miocene age and may be intimately related to a climatic overprint of the tectonic system. This climatic forcing is also reflected in the topography and local relief of the Central and Southern Andes that vary considerably along the margin, determined by the dominant surface process that in turn is eventually controlled by climate. However, relief also partly reflects surface processes that have taken place under past climatic conditions. This emphasizes that due care has to be exercised when interpreting landscapes as mirrors of modern climates.}, language = {en} } @phdthesis{Santuber2023, author = {Santuber, Joaquin}, title = {Designing for digital justice}, doi = {10.25932/publishup-60417}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604178}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 183}, year = {2023}, abstract = {At the beginning of 2020, with COVID-19, courts of justice worldwide had to move online to continue providing judicial service. Digital technologies materialized the court practices in ways unthinkable shortly before the pandemic creating resonances with judicial and legal regulation, as well as frictions. A better understanding of the dynamics at play in the digitalization of courts is paramount for designing justice systems that serve their users better, ensure fair and timely dispute resolutions, and foster access to justice. Building on three major bodies of literature —e-justice, digitalization and organization studies, and design research— Designing for Digital Justice takes a nuanced approach to account for human and more-than-human agencies. Using a qualitative approach, I have studied in depth the digitalization of Chilean courts during the pandemic, specifically between April 2020 and September 2022. Leveraging a comprehensive source of primary and secondary data, I traced back the genealogy of the novel materializations of courts' practices structured by the possibilities offered by digital technologies. In five (5) cases studies, I show in detail how the courts got to 1) work remotely, 2) host hearings via videoconference, 3) engage with users via social media (i.e., Facebook and Chat Messenger), 4) broadcast a show with judges answering questions from users via Facebook Live, and 5) record, stream, and upload judicial hearings to YouTube to fulfil the publicity requirement of criminal hearings. The digitalization of courts during the pandemic is characterized by a suspended normativity, which makes innovation possible yet presents risks. While digital technologies enabled the judiciary to provide services continuously, they also created the risk of displacing traditional judicial and legal regulation. Contributing to liminal innovation and digitalization research, Designing for Digital Justice theorizes four phases: 1) the pre-digitalization phase resulting in the development of regulation, 2) the hotspot of digitalization resulting in the extension of regulation, 3) the digital innovation redeveloping regulation (moving to a new, preliminary phase), and 4) the permanence of temporal practices displacing regulation. Contributing to design research Designing for Digital Justice provides new possibilities for innovation in the courts, focusing at different levels to better address tensions generated by digitalization. Fellow researchers will find in these pages a sound theoretical advancement at the intersection of digitalization and justice with novel methodological references. Practitioners will benefit from the actionable governance framework Designing for Digital Justice Model, which provides three fields of possibilities for action to design better justice systems. Only by taking into account digital, legal, and social factors can we design better systems that promote access to justice, the rule of law, and, ultimately social peace.}, language = {en} } @phdthesis{Schuster2017, author = {Schuster, Isabell}, title = {Prevalence and Predictors of Sexual Aggression Victimization and Perpetration in Chile and Turkey}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413897}, school = {Universit{\"a}t Potsdam}, pages = {285}, year = {2017}, abstract = {Background: Although sexual aggression is recognized as a serious issue worldwide, the current knowledge base is primarily built on evidence from Western countries, particularly the U.S. For the present doctoral research, Chile and Turkey were selected based on theoretical considerations to examine the prevalence as well as predictors of sexual aggression victimization and perpetration. The first aim of this research project was to systematically review the available evidence provided by past studies on this topic within each country. The second aim was to empirically study the prevalence of experiencing and engaging in sexual aggression since the age of consent among college students in Chile and Turkey. The third aim was to conduct cross-cultural analyses examining pathways to victimization and perpetration based on a two-wave longitudinal design. Methods: This research adopted a gender-inclusive approach by considering men and women in both victim and perpetrator roles. For the systematic reviews, multiple-stage literature searches were performed, and based on a predefined set of eligibility criteria, 28 studies in Chile and 56 studies in Turkey were identified for inclusion. A two-wave longitudinal study was conducted to examine the prevalence and predictors of sexual aggression among male and female college students in Chile and Turkey. Self-reports of victimization and perpetration were assessed with a Chilean Spanish or Turkish version of the Sexual Aggression and Victimization Scale. Two path models were conceptualized in which participants' risky sexual scripts for consensual sex, risky sexual behavior, sexual self-esteem, sexual assertiveness, and religiosity were assessed at T1 and used as predictors of sexual aggression victimization and perpetration at T2 in the following 12 months, mediated through past victimization or perpetration, respectively. The models differed in that sexual assertiveness was expected to serve different functions for victimization (refusal assertiveness negatively linked to victimization) and perpetration (initiation assertiveness positively linked to perpetration). Results: Both systematic reviews revealed that victimization was addressed by all included studies, but data on perpetration was severely limited. A great heterogeneity not only in victimization rates but also in predictors was found, which may be attributed to a lack of conceptual and methodological consistency across studies. The empirical analysis of the prevalence of sexual aggression in Chile revealed a victimization rate of 51.9\% for women and 48.0\% for men, and a perpetration rate of 26.8\% for men and 16.5\% for women. In the Turkish original data, victimization was reported by 77.6\% of women and 65.5\% of men, whereas, again, lower rates were found for perpetration, with 28.9\% of men and 14.2\% of women reporting at least one incident. The cross-cultural analyses showed, as expected, that risky sexual scripts informed risky sexual behavior, and thereby indirectly increased the likelihood of victimization and perpetration at T2 in both samples. More risky sexual scripts were also linked to lower levels of refusal assertiveness in both samples, indirectly increasing the vulnerability to victimization at T2. High sexual self-esteem decreased the probability of victimization at T2 through higher refusal assertiveness as well as through less risky sexual behavior also in both samples, whereas it increased the odds of perpetration at T2 via higher initiation assertiveness in the Turkish sample only. Furthermore, high religiosity decreased the odds of perpetration and victimization at T2 through less risky sexual scripts and less risky sexual behavior in both samples. It reduced the vulnerability to victimization through less risky sexual scripts and higher refusal assertiveness in the Chilean sample only. In the Turkish sample only, it increased the odds of perpetration and victimization through lower sexual self-esteem. Conclusions: The findings showed that sexual aggression is a widespread problem in both Chile and Turkey, contributing cross-cultural evidence to the international knowledge base and indicating the clear need for implementing policy measures and prevention strategies in each country. Based on the results of the prospective analyses, concrete implications for intervention efforts are discussed.}, language = {en} } @phdthesis{Stefer2009, author = {Stefer, Susanne}, title = {Late Pleistocene-Holocene sedimentary processes at the active margin of South-Central Chile : marine and lacustrine sediment records as archives of tectonics and climate variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33731}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Active continental margins are affected by complex feedbacks between tectonic, climate and surface processes, the intricate relations of which are still a matter of discussion. The Chilean convergent margin, forming the outstanding Andean subduction orogen, constitutes an ideal natural laboratory for the investigation of climate, tectonics and their interactions. In order to study both processes, I examined marine and lacustrine sediments from different depositional environments on- and offshore the south-central Chilean coast (38-40°S). I combined sedimentological, geochemical and isotopical analyses to identify climatic and tectonic signals within the sedimentary records. The investigation of marine trench sediments (ODP Site 1232, SONNE core 50SL) focused on frequency changes of turbiditic event layers since the late Pleistocene. In the active margin setting of south-central Chile, these layers were considered to reflect periodically occurring earthquakes and to constitute an archive of the regional paleoseismicity. The new results indicate glacial-interglacial changes in turbidite frequencies during the last 140 kyr, with short recurrence times (~200 years) during glacial and long recurrence times (~1000 years) during interglacial periods. Hence, the generation of turbidites appears to be strongly influenced by climate and sea level changes, which control on the amount of sediment delivered to the shelf edge and therewith the stability of the continental slope: more stable slope conditions during interglacial periods entail lower turbidite frequencies than in glacial periods. Since glacial turbidite recurrence times are congruent with earthquake recurrence times derived from the historical record and other paleoseismic archives of the region, I concluded that only during cold stages the sediment availability and slope instability enabled the complete series of large earthquakes to be recorded. The sediment transport to the shelf region is not only driven by climate conditions but also influenced by local forearc tectonics. Accelerating uplift rates along major tectonic structures involved drainage anomalies and river flow inversions, which seriously altered the sediment supply to the Pacific Ocean. Two examples for the tectonic hindrance of fluvial systems are the coastal lakes Lago Lanalhue and Lago Lleu Lleu. Both lakes developed within former river valleys, which once discharged towards the Pacific and were dammed by tectonically uplifted sills at ~8000 yr BP. Analyses of sediment cores from the lakes showed similar successions of marine/brackish deposits at the bottom, covered by lacustrine sediments on top. Dating of the transitions between these different units and the comparison with global sea level curves allowed me to calculate local Holocene uplift rates, which are distinctly higher for the upraised sills (Lanalhue: 8.83 ± 2.7 mm/yr, Lleu Lleu: 11.36 ± 1.77 mm/yr) than for the lake basins (Lanalhue: 0.42 ± 0.71 mm/yr, Lleu Lleu: 0.49 ± 0.44 mm/yr). I hence considered the sills to be the surface expression of a blind thrust associated with a prominent inverse fault that is controlling regional uplift and folding. After the final separation of Lago Lanalhue and Lago Lleu Lleu from the Pacific, a constant deposition of lacustrine sediments preserved continuous records of local environmental changes. Sequences from both lakes indicate a long-term climate trend with a significant shift from more arid conditions during the Mid-Holocene (8000 - 4200 cal yr BP) to more humid conditions during the Late Holocene (4200 cal yr BP - present). This trend is consistent with other regional paleoclimatic data and interpreted to reflect changes in the strength/position of the Southern Westerly Winds. Since ~5000 years, sediments of Lago Lleu Lleu are marked by numerous intercalated detrital layers that recur with a mean frequency of ~210 years. Deposition of these layers may be triggered by local tectonics (i.e. earthquakes), but may also originate from changes in the local climate (e.g. onset of modern ENSO conditions). During the last 2000 years, pronounced variations in the terrigenous sediment supply to both lakes suggest important hydrological changes on the centennial time-scale as well. A lower input of terrigenous matter points to less humid phases between 200 cal yr B.C. - 150 cal yr A.D., 900 - 1350 cal yr A.D. and 1850 cal yr A.D. to present (broadly corresponding to the Roman, Medieval, and Modern Warm Periods). More humid periods persisted from 150 - 900 cal yr A.D. and 1350 - 1850 cal yr A.D. (broadly corresponding to the Dark Ages and the Little Ice Age). In conclusion, the combined investigation of marine and lacustrine sediments is a feasible method for the reconstruction of climatic and tectonic processes on different time scales. My approach allows exploring both climate and tectonics in one and the same archive, and is largely transferable to other active margins worldwide.}, language = {en} }