@misc{RheinwaltBookhagen2018, author = {Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Network-based flow accumulation for point clouds}, series = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, volume = {10783}, journal = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, publisher = {SPIE-INT Society of Photo-Optical Instrumentation Engineers}, address = {Bellingham}, isbn = {978-1-5106-2150-3}, issn = {0277-786X}, doi = {10.1117/12.2318424}, pages = {12}, year = {2018}, abstract = {Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic.}, language = {en} }