@phdthesis{Yuan2015, author = {Yuan, Jiayin}, title = {Poly(Ionic Liquid)s}, school = {Universit{\"a}t Potsdam}, pages = {300}, year = {2015}, language = {en} } @phdthesis{Hermanns2021, author = {Hermanns, Jolanda}, title = {Development, use and evaluation of concepts and materials for teaching organic chemistry at university}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Breternitz2023, author = {Breternitz, Joachim}, title = {Structural systematic investigations of photovoltaic absorber materials}, school = {Universit{\"a}t Potsdam}, pages = {189}, year = {2023}, abstract = {The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided.}, language = {en} } @phdthesis{Bouakline2023, author = {Bouakline, Foudhil}, title = {Manifestations of Quantum-Mechanical Effects in Molecular Reaction Dynamics}, school = {Universit{\"a}t Potsdam}, pages = {316}, year = {2023}, abstract = {This habilitation thesis summarises the research work performed by the author during the last quindecennial period. The dissertation reflects his main research interests, which revolve around quantum dynamics of small-sized molecular systems, including their interactions with electromagnetic radiation or dissipative environments. This covers various dynamical processes that involve bound-bound, bound-free, and free-free molecular transitions. The latter encompass light-triggered rovibrational or rovibronic dynamics in bound molecules, molecular photodissociation induced by weak or strong laser fields, state-to-state reactive and/or inelastic molecular collisions, and phonon-driven vibrational relaxation of adsorbates at solid surfaces. Although the dissertation covers different topics of molecular reaction dynamics, most of these studies focus on nuclear quantum effects and their manifestations in experimental measures. The latter are assessed through comparison between quantum and classical predictions, and/or direct confrontation of theory and experiment. Most well known quantum concepts and effects will be encountered in this work. Yet, almost all these quantum notions find their roots in the central pillar of quantum theory, namely, the quantum superposition principle. Indeed, quantum coherence is the main source of most quantum effects, including interference, entanglement, and even tunneling. Thus, the common and predominant theme of all the investigations of this thesis is quantum coherence, and the survival or quenching of subsequent interference effects in various molecular processes. The lion's share of the dissertation is devoted to two associated quantum concepts, which are usually overlooked in computational molecular dynamics, viz. the Berry phase and identical nuclei symmetry. The importance of the latter in dynamical molecular processes and their direct fingerprints in experimental observables also rely very much on quantum coherence and entanglement. All these quantum phenomena are thoroughly discussed within the four main topics that form the core of this thesis. Each topic is described in a separate chapter, where it is briefly summarised and then illustrated with three peer-reviewed publications. The first topic deals with the relevance of quantum coherence/interference in molecular collisions, with a focus on the hydrogen-exchange reaction, H+H2 --> H2+H, and its isotopologues. For these collision processes, the significance of interference of probability amplitudes arises because of the existence of two main scattering pathways. The latter could be inelastic and reactive scattering, direct and time-delayed scattering, or two encircling reaction paths that loop in opposite senses around a conical intersection (CI) of the H3 molecular system. Our joint theoretical-experimental investigations of these processes reveal strong interference and geometric phase (GP) effects in state-to-state reaction probabilities and differential cross sections. However, these coherent effects completely cancel in integral cross sections and reaction rate constants, due to efficient dephasing of interference between the different scattering amplitudes. As byproducts of these studies, we highlight the discovery of two novel scattering mechanisms, which contradict conventional textbook pictures of molecular reaction dynamics. The second topic concerns the effect of the Berry phase on molecular photodynamics at conical intersections. To understand this effect, we developed a topological approach that separates the total molecular wavefunction of an unbound molecular system into two components, which wind in opposite senses around the conical intersection. This separation reveals that the only effect of the geometric phase is to change the sign of the relative phase of these two components. This in turn leads to a shift in the interference pattern of the molecular system---a phase shift that is reminiscient of the celebrated Aharonov-Bohm effect. This procedure is numerically illustrated with photodynamics at model standard CIs, as well as strong-field dissociation of diatomics at light-induced conical intersections (LICIs). Besides the fundamental aspect of these studies, their findings allow to interpret and predict the effect of the GP on the state-resolved or angle-resolved spectra of pump-probe experimental schemes, particularly the distributions of photofragments in molecular photodissociation experiments. The third topic pertains to the role of the indistinguishability of identical nuclei in molecular reaction dynamics, with an emphasis on dynamical localization in highly symmetric molecules. The main object of these studies is whether nuclear-spin statistics allow dynamical localization of the electronic, vibrational, or even rotational density on a specific molecular substructure or configuration rather than on another one which is identical (indistinguishable). Group-theoretic analysis of the symmetrized molecular wavefunctions of these systems shows that nuclear permutation symmetry engenders quantum entanglement between the eigenstates of the different molecular degrees of freedom. This subsequently leads to complete quenching of dynamical localization over indistinguishable molecular substructures---an observation that is in sharp contradiction with well known textbook views of iconic molecular processes. This is illustrated with various examples of quantum dynamics in symmetric double-well achiral molecules, such as the prototypical umbrella inversion motion of ammonia, electronic Kekul{\´e} dynamics in the benzene molecule, and coupled electron-nuclear dynamics in laser-induced indirect photodissociation of the dihydrogen molecular cation. The last part of the thesis is devoted to the development of approximate wavefunction approaches for phonon-induced vibrational relaxation of adsorbates (system) at surfaces (bath). Due to the so-called 'curse of dimensionality', these system-bath complexes cannot be handled with standard wavefunction methods. To alleviate the exponential scaling of the latter, we developed approximate yet quite accurate numerical schemes that have a polynomial scaling with respect to the bath dimensionality. The corresponding algorithms combine symmetry-based reductions of the full vibrational Hilbert space and iterative Krylov techniques. These approximate wavefunction approaches resemble the 'Bixon-Jortner model' and the more general 'quantum tier model'. This is illustrated with the decay of H-Si (D-Si) vibrations on a fully H(D)-covered silicon surface, which is modelled with a phonon-bath of more than two thousand oscillators. These approximate methods allow reliable estimation of the adsorbate vibrational lifetimes, and provide some insight into vibration-phonon couplings at solid surfaces. Although this topic is mainly computational, the developed wavefunction approaches permit to describe quantum entanglement between the system and bath states, and to embody some coherent effects in the time-evolution of the (sub-)system, which cannot be accounted for with the widely used 'reduced density matrix formalism'.}, language = {en} } @phdthesis{Savatieiev2023, author = {Savatieiev, Oleksandr}, title = {Carbon nitride semiconductors: properties and application as photocatalysts in organic synthesis}, school = {Universit{\"a}t Potsdam}, pages = {272}, year = {2023}, abstract = {Graphitic carbon nitrides (g-CNs) are represented by melon-type g-CN, poly(heptazine imides) (PHIs), triazine-based g-CN and poly(triazine imide) with intercalated LiCl (PTI/Li+Cl‒). These materials are composed of sp2-hybridized carbon and nitrogen atoms; C:N ratio is close to 3:4; the building unit is 1,3,5-triazine or tri-s-triazine; the building units are interconnected covalently via sp2-hybridized nitrogen atoms or NH-moieties; the layers are assembled into a stack via weak van der Waals forces as in graphite. Due to medium band gap (~2.7 eV) g-CNs, such as melon-type g-CN and PHIs, are excited by photons with wavelength ≤ 460 nm. Since 2009 g-CNs have been actively studied as photocatalysts in evolution of hydrogen and oxygen - two half-reactions of full water splitting, by employing corresponding sacrificial agents. At the same time application of g-CNs as photocatalysts in organic synthesis has been remaining limited to few reactions only. Cumulative Habilitation summarizes research work conducted by the group 'Innovative Heterogeneous Photocatalysis' between 2017-2023 in the field of carbon nitride organic photocatalysis, which is led by Dr. Oleksandr Savatieiev. g-CN photocatalysts activate molecules, i.e. generate their more reactive open-shell intermediates, via three modes: i) Photoinduced electron transfer (PET); ii) Excited state proton-coupled electron transfer (ES-PCET) or direct hydrogen atom transfer (dHAT); iii) Energy transfer (EnT). The scope of reactions that proceed via oxidative PET, i.e. one-electron oxidation of a substrate to the corresponding radical cation, are represented by synthesis of sulfonylchlorides from S-acetylthiophenols. The scope of reactions that proceed via reductive PET, i.e. one-electron reduction of a substrate to the corresponding radical anion, are represented by synthesis of γ,γ-dichloroketones from the enones and chloroform. Due to abundance of sp2-hybridized nitrogen atoms in the structure of g-CN materials, they are able to cleave X-H bonds in organic molecules and store temporary hydrogen atom. ES-PCET or dHAT mode of organic molecules activation to the corresponding radicals is implemented for substrates featuring relatively acidic X-H bonds and those that are characterized by low bond dissociation energy, such as C-H bond next to the heteroelements. On the other hand, reductively quenched g-CN carrying hydrogen atom reduces a carbonyl compound to the ketyl radical via PCET that is thermodynamically more favorable pathway compared to the electron transfer. The scope of these reactions is represented by cyclodimerization of α,β-unsaturated ketones to cyclopentanoles. g-CN excited state demonstrates complex dynamics with the initial formation of singlet excited state, which upon intersystem crossing produces triplet excited state that is characterized by the lifetime > 2 μs. Due to long lifetime, g-CN activate organic molecules via EnT. For example, g-CN sensitizes singlet oxygen, which is the key intermediate in the dehydrogenation of aldoximes to nitrileoxides. The transient nitrileoxide undergoes [3+2]-cycloaddition to nitriles and gives oxadiazoles-1,2,4. PET, ES-PCET and EnT are fundamental phenomena that are applied beyond organic photocatalysis. Hybrid composite is formed by combining conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with potassium poly(heptazine imide) (K-PHI). Upon PET, K-PHI modulated population of polarons and therefore conductivity of PEDOT:PSS. The initial state of PEDOT:PSS is recovered upon material exposure to O2. K-PHI:PEDOT:PSS may be applied in O2 sensing. In the presence of electron donors, such as tertiary amines and alcohols, and irradiation with light, K-PHI undergoes photocharging - the g-CN material accumulates electrons and charge-compensating cations. Such photocharged state is stable under anaerobic conditions for weeks, but at the same time it is a strong reductant. This feature allows decoupling in time light harvesting and energy storage in the form of electron-proton couples from utilization in organic synthesis. The photocharged state of K-PHI reduces nitrobenzene to aniline, and enables dimerization of α,β-unsaturated ketones to hexadienones in dark.}, language = {en} }