@article{RusconiVallerianiDunlopetal.2009, author = {Rusconi, Marco and Valleriani, Angelo and Dunlop, John William Chapman and Kurths, J{\"u}rgen and Weinkamer, Richard}, title = {Insights into the control of trabecular bone remodelling obtained by a Markov model}, issn = {8756-3282}, doi = {10.1016/j.bone.2009.03.467}, year = {2009}, language = {en} } @article{RusconiVallerianiDunlopetal.2012, author = {Rusconi, Marco and Valleriani, Angelo and Dunlop, John William Chapman and Kurths, J{\"u}rgen and Weinkamer, Richard}, title = {Quantitative approach to the stochastics of bone remodeling}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {97}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {2}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/97/28009}, pages = {6}, year = {2012}, abstract = {During life bones constantly adapt their structure to their mechanical environment via a mechanically controlled process called bone remodeling. For trabecular bone, this process modifies the thickness of each trabecula leading occasionally to full resorption. We describe the irreversible dynamics of the trabecular thickness distribution (TTD) by means of a Markov chain discrete in space and time. By using thickness data from adult patients, we derive the transition probabilities in the chain. This allows a quantification, in terms of geometrical quantities, of the control of bone remodeling and thus to determine the evolution of the TTD with age.}, language = {en} } @article{StangeHintscheSachseetal.2017, author = {Stange, Maike and Hintsche, Marius and Sachse, Kirsten and Gerhardt, Matthias and Valleriani, Angelo and Beta, Carsten}, title = {Analyzing the spatial positioning of nuclei in polynuclear giant cells}, series = {Journal of Physics D: Applied Physics}, volume = {50}, journal = {Journal of Physics D: Applied Physics}, number = {46}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/aa8da0}, pages = {8}, year = {2017}, abstract = {How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.}, language = {en} } @article{VallerianiZhangNagaretal.2011, author = {Valleriani, Angelo and Zhang, Gong and Nagar, Apoorva and Ignatova, Zoya and Lipowsky, Reinhard}, title = {Length-dependent translation of messenger RNA by ribosomes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {83}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.83.042903}, pages = {4}, year = {2011}, abstract = {A simple measure for the efficiency of protein synthesis by ribosomes is provided by the steady state amount of protein per messenger RNA (mRNA), the so-called translational ratio, which is proportional to the translation rate. Taking the degradation of mRNA into account, we show theoretically that both the translation rate and the translational ratio decrease with increasing mRNA length, in agreement with available experimental data for the prokaryote Escherichia coli. We also show that, compared to prokaryotes, mRNA degradation in eukaryotes leads to a less rapid decrease of the translational ratio. This finding is consistent with the fact that, compared to prokaryotes, eukaryotes tend to have longer proteins.}, language = {en} }