@article{AlluSimancasBalazadehetal.2017, author = {Allu, Annapurna Devi and Simancas, Barbara and Balazadeh, Salma and Munne-Bosch, Sergi}, title = {Defense-Related Transcriptional Reprogramming in Vitamin E-Deficient Arabidopsis Mutants Exposed to Contrasting Phosphate Availability}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.01396}, pages = {20}, year = {2017}, abstract = {Vitamin E inhibits the propagation of lipid peroxidation and helps protecting photosystem II from photoinhibition, but little is known about its possible role in plant response to Pi availability. Here, we aimed at examining the effect of vitamin E deficiency in Arabidopsis thaliana vte mutants on phytohormone contents and the expression of transcription factors in plants exposed to contrasting Pi availability. Plants were subjected to two doses of Pi, either unprimed (controls) or previously exposed to low Pi (primed). In the wild type, alpha-tocopherol contents increased significantly in response to repeated periods of low Pi, which was paralleled by increased growth, indicative of a priming effect. This growth-stimulating effect was, however, abolished in vte mutants. Hormonal profiling revealed significant effects of Pi availability, priming and genotype on the contents of jasmonates and salicylates; remarkably, vte mutants showed enhanced accumulation of both hormones under low Pi. Furthermore, expression profiling of 1,880 transcription factors by qRT-PCR revealed a pronounced effect of priming on the transcript levels of 45 transcription factors mainly associated with growth and stress in wild-type plants in response to low Pi availability; while distinct differences in the transcriptional response were detected in vte mutants. We conclude that alpha-tocopherol plays a major role in the response of plants to Pi availability not only by protecting plants from photo-oxidative stress, but also by exerting a control over growth-and defense-related transcriptional reprogramming and hormonal modulation.}, language = {en} } @misc{CastroGruneSpeckmann2016, author = {Castro, Jos{\´e} Pedro and Grune, Tilman and Speckmann, Bodo}, title = {The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction}, series = {Biological chemistry}, volume = {397}, journal = {Biological chemistry}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2015-0305}, pages = {709 -- 724}, year = {2016}, abstract = {White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/ release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho) physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e. g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.}, language = {en} } @article{AliHomannKreiseletal.2012, author = {Ali, Mostafa and Homann, Thomas and Kreisel, Janka and Khalil, Mahmoud and Puhlmann, Ralf and Kruse, Hans-Peter and Rawel, Harshadrai Manilal}, title = {Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {60}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/jf303372a}, pages = {11601 -- 11608}, year = {2012}, abstract = {This study addresses the interactions of coffee storage proteins with coffee-specific phenolic compounds. Protein profiles, of Coffea arabica and Coffea canephora (var robusta) were compared. Major Phenolic compounds were extracted and analyzed with appropriate methods. The polyphenol-protein interactions during protein extraction have been addressed by different analytical setups [reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and Trolox equivalent antioxidant capacity (TEAC) assays], with focus directed toward identification of covalent adduct formation. The results indicate that C. arabica proteins are more susceptible to these interactions and the polyphenol oxidase activity seems to be a crucial factor for the formation of these addition products. A tentative allocation of the modification type and site in the protein has been attempted. Thus, the first available in silico modeling of modified coffee proteins is reported. The extent of these modifications may contribute to the structure and function of "coffee melanoidins" and are discussed in the context of coffee flavor formation.}, language = {en} } @article{KleinDarvinMeinkeetal.2013, author = {Klein, Julia and Darvin, Maxim E. and Meinke, Martina C. and Schweigert, Florian J. and M{\"u}ller, Kerstin E. and Lademann, J{\"u}rgen}, title = {Analyses of the correlation between dermal and blood carotenoids in female cattle by optical methods}, series = {Journal of biomedical optics}, volume = {18}, journal = {Journal of biomedical optics}, number = {6}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.18.6.061219}, pages = {6}, year = {2013}, abstract = {Herd health programs for the maintenance of welfare and productivity in cattle need efficient tools for monitoring the health of individual animals. Recent reports demonstrate that the oxidative status is related to various stress conditions in dairy cows. Biomarkers, among other carotenoids, could serve as indicators of stress originating from the environment (e.g., heat stress or sun radiation) or from the animal itself (e.g., disease). To date, only invasive in vitro tests are available to assess the oxidative status in cattle. The present study compares the results of optical noninvasive in vivo measurements of dermal carotenoids in cattle udder skin using an LED-based miniaturized spectroscopic system (MSS) with those obtained by photometric analysis of beta carotene in whole blood samples using a portable device. Correlations between the concentrations of dermal and blood carotenoids were calculated under consideration of the nutritional status of the animals. Significant correlation (R = 0.86) was found for cattle with a moderate to obese body condition. Thus, the blood and skin concentrations of the marker substance beta carotene are comparable under stable stress conditions of the cattle. This demonstrates that the MSS is suitable for noninvasive assessment of dermal carotenoid concentrations in cattle.}, language = {en} } @article{AliHomannKhaliletal.2013, author = {Ali, Mostafa and Homann, Thomas and Khalil, Mahmoud and Kruse, Hans-Peter and Rawel, Harshadrai Manilal}, title = {Milk whey protein modification by coffee-specific phenolics effect on structural and functional properties}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {61}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {28}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/jf402221m}, pages = {6911 -- 6920}, year = {2013}, abstract = {A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of beta-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified beta-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified beta-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.}, language = {en} }